1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
|
# ---
# jupyter:
# jupytext:
# formats: py:percent
# text_representation:
# extension: .py
# format_name: percent
# format_version: '1.3'
# jupytext_version: 1.4.2
# kernelspec:
# display_name: Python 3
# language: python
# name: python3
# ---
# %% [markdown]
# # American options
#
# Copyright (©) 2004, 2005, 2006, 2007 StatPro Italia srl
#
# This file is part of QuantLib, a free-software/open-source library
# for financial quantitative analysts and developers - https://www.quantlib.org/
#
# QuantLib is free software: you can redistribute it and/or modify it under the
# terms of the QuantLib license. You should have received a copy of the
# license along with this program; if not, please email
# <quantlib-dev@lists.sf.net>. The license is also available online at
# <https://www.quantlib.org/license.shtml>.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the license for more details.
# %%
import QuantLib as ql
import pandas as pd
# %% [markdown]
# ### Global parameters
# %%
todaysDate = ql.Date(15, ql.May, 1998)
ql.Settings.instance().evaluationDate = todaysDate
# %%
interactive = "get_ipython" in globals()
# %% [markdown]
# ### Option construction
# %%
exercise = ql.AmericanExercise(todaysDate, ql.Date(17, ql.May, 1999))
payoff = ql.PlainVanillaPayoff(ql.Option.Put, 40.0)
# %%
option = ql.VanillaOption(payoff, exercise)
# %% [markdown]
# ### Market data
# %%
underlying = ql.SimpleQuote(36.0)
dividendYield = ql.FlatForward(todaysDate, 0.00, ql.Actual365Fixed())
volatility = ql.BlackConstantVol(todaysDate, ql.TARGET(), 0.20, ql.Actual365Fixed())
riskFreeRate = ql.FlatForward(todaysDate, 0.06, ql.Actual365Fixed())
# %%
process = ql.BlackScholesMertonProcess(
ql.QuoteHandle(underlying),
ql.YieldTermStructureHandle(dividendYield),
ql.YieldTermStructureHandle(riskFreeRate),
ql.BlackVolTermStructureHandle(volatility),
)
# %% [markdown]
# ### Pricing
#
# We'll collect tuples of method name, option value, and estimated error from the analytic formula.
# %%
results = []
# %% [markdown]
# #### Analytic approximations
# %%
option.setPricingEngine(ql.BaroneAdesiWhaleyApproximationEngine(process))
results.append(("Barone-Adesi-Whaley", option.NPV()))
# %%
option.setPricingEngine(ql.BjerksundStenslandApproximationEngine(process))
results.append(("Bjerksund-Stensland", option.NPV()))
# %% [markdown]
# #### Finite-difference method
# %%
timeSteps = 801
gridPoints = 800
# %%
option.setPricingEngine(ql.FdBlackScholesVanillaEngine(process, timeSteps, gridPoints))
results.append(("finite differences", option.NPV()))
# %% [markdown]
# #### Li, M. QD+ American engine
# %%
option.setPricingEngine(ql.QdPlusAmericanEngine(process))
results.append(("QD+", option.NPV()))
# %% [markdown]
# #### Leif Andersen, Mark Lake and Dimitri Offengenden high performance American engine
# %%
option.setPricingEngine(
ql.QdFpAmericanEngine(process, ql.QdFpAmericanEngine.accurateScheme())
)
results.append(("QD+ fixed point", option.NPV()))
# %% [markdown]
# #### Binomial method
# %%
timeSteps = 801
# %%
for tree in ["JR", "CRR", "EQP", "Trigeorgis", "Tian", "LR", "Joshi4"]:
option.setPricingEngine(ql.BinomialVanillaEngine(process, tree, timeSteps))
results.append(("Binomial (%s)" % tree, option.NPV()))
# %% [markdown]
# ### Results
# %%
df = pd.DataFrame(results, columns=["Method", "Option value"])
df.style.hide(axis="index")
# %% [markdown]
# The following displays the results when this is run as a Python script (in which case the cell above is not displayed).
# %%
if not interactive:
print(df)
|