1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
|
# ---
# jupyter:
# jupytext:
# formats: py:light
# text_representation:
# extension: .py
# format_name: light
# format_version: '1.5'
# jupytext_version: 1.11.2
# kernelspec:
# display_name: Python 3
# language: python
# name: python3
# ---
# # ISDA CDS engine
#
# This file is part of QuantLib, a free-software/open-source library
# for financial quantitative analysts and developers - https://www.quantlib.org/
#
# QuantLib is free software: you can redistribute it and/or modify it under the
# terms of the QuantLib license. You should have received a copy of the
# license along with this program; if not, please email
# <quantlib-dev@lists.sf.net>. The license is also available online at
# <https://www.quantlib.org/license.shtml>.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the license for more details.
import QuantLib as ql
import pandas as pd
interactive = 'get_ipython' in globals()
trade_date = ql.Date(21,5,2009)
ql.Settings.instance().evaluationDate = trade_date
ql.IborCoupon.createAtParCoupons()
dep_tenors = [1,2,3,6,9,12]
dep_quotes = [0.003081,0.005525,0.007163,0.012413,0.014,0.015488]
isdaRateHelpers = [ql.DepositRateHelper(dep_quotes[i],
dep_tenors[i]*ql.Period(ql.Monthly),
2,ql.WeekendsOnly(),
ql.ModifiedFollowing,
False,ql.Actual360())
for i in range(len(dep_tenors))]
swap_tenors = [2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20, 25, 30]
swap_quotes = [0.011907,
0.01699,
0.021198,
0.02444,
0.026937,
0.028967,
0.030504,
0.031719,
0.03279,
0.034535,
0.036217,
0.036981,
0.037246,
0.037605]
isda_ibor = ql.IborIndex('IsdaIbor',3*ql.Period(ql.Monthly),2,
ql.USDCurrency(),ql.WeekendsOnly(),
ql.ModifiedFollowing,False,ql.Actual360())
isdaRateHelpers = isdaRateHelpers + [
ql.SwapRateHelper(swap_quotes[i],swap_tenors[i]*ql.Period(ql.Annual),
ql.WeekendsOnly(),ql.Semiannual,ql.ModifiedFollowing,
ql.Thirty360(ql.Thirty360.BondBasis),isda_ibor)
for i in range(len(swap_tenors))]
spot_date = ql.WeekendsOnly().advance(trade_date, 2 * ql.Period(ql.Daily))
# Technically, the model requires the discount factor to be 1 at spot;
# but we can't do that and also have the discount curve extend back to
# the trade date. For the time being, we'll keep discount = 1 at trade.
# The results match anyway.
swap_curve = ql.PiecewiseFlatForward(trade_date, isdaRateHelpers, ql.Actual365Fixed())
discountCurve = ql.YieldTermStructureHandle(swap_curve)
probabilityCurve = ql.RelinkableDefaultProbabilityTermStructureHandle()
termDates = [ql.Date(20, 6, 2010),
ql.Date(20, 6, 2011),
ql.Date(20, 6, 2012),
ql.Date(20, 6, 2016),
ql.Date(20, 6, 2019)]
spreads = [0.001, 0.1]
recoveries = [0.2, 0.4]
markitValues = [97798.29358, #0.001
97776.11889, #0.001
-914971.5977, #0.1
-894985.6298, #0.1
186921.3594, #0.001
186839.8148, #0.001
-1646623.672, #0.1
-1579803.626, #0.1
274298.9203,
274122.4725,
-2279730.93,
-2147972.527,
592420.2297,
591571.2294,
-3993550.206,
-3545843.418,
797501.1422,
795915.9787,
-4702034.688,
-4042340.999]
tolerance = 1.0e-2
l = 0
distance = 0
data = []
upfront_date = ql.WeekendsOnly().advance(trade_date, 3 * ql.Period(ql.Daily))
for termDate in termDates:
for spread in spreads:
for recovery in recoveries:
cdsSchedule = ql.Schedule(trade_date, termDate,
3*ql.Period(ql.Monthly),
ql.WeekendsOnly(),
ql.Following, ql.Unadjusted,
ql.DateGeneration.CDS, False)
quotedTrade = ql.CreditDefaultSwap(
ql.Protection.Buyer,10000000,0,spread,cdsSchedule,
ql.Following,ql.Actual360(),True,True,trade_date,
upfront_date, ql.FaceValueClaim(), ql.Actual360(True))
h = quotedTrade.impliedHazardRate(0,discountCurve,ql.Actual365Fixed(),
recovery,1e-10,
ql.CreditDefaultSwap.ISDA)
probabilityCurve.linkTo(
ql.FlatHazardRate(0,ql.WeekendsOnly(),
ql.makeQuoteHandle(h),
ql.Actual365Fixed()))
engine = ql.IsdaCdsEngine(probabilityCurve,recovery,discountCurve)
conventionalTrade = ql.CreditDefaultSwap(
ql.Protection.Buyer,10000000,0,0.01,cdsSchedule,
ql.Following,ql.Actual360(),True,True,trade_date,
upfront_date, ql.FaceValueClaim(), ql.Actual360(True))
conventionalTrade.setPricingEngine(engine)
upfront = conventionalTrade.notional() * conventionalTrade.fairUpfront()
data.append(
(termDate,
spread,
recovery,
h,
upfront,
markitValues[l],
abs(upfront-markitValues[l]),
abs(upfront-markitValues[l])<tolerance)
)
distance = distance + abs(upfront-markitValues[l])
l = l + 1
df = pd.DataFrame(data, columns=["Term date", "Spread", "Recovery",
"Hazard rate", "Upfront", "Markit value", "Distance", "Within tolerance"])
if not interactive:
print(df)
df.style.format({'Spread': '{:.4%}', 'Hazard rate': '{:.2%}', 'Upfront': '{:.2f}',
'Markit value': '{:.2f}', 'Distance': '{:.6f}'})
print('total distance:',distance)
|