File: isda-engine.py

package info (click to toggle)
quantlib-swig 1.40-4
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 2,280 kB
  • sloc: python: 6,024; java: 1,552; cs: 774; makefile: 349; sh: 22
file content (178 lines) | stat: -rw-r--r-- 6,453 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# ---
# jupyter:
#   jupytext:
#     formats: py:light
#     text_representation:
#       extension: .py
#       format_name: light
#       format_version: '1.5'
#       jupytext_version: 1.11.2
#   kernelspec:
#     display_name: Python 3
#     language: python
#     name: python3
# ---

# # ISDA CDS engine
#
# This file is part of QuantLib, a free-software/open-source library
# for financial quantitative analysts and developers - https://www.quantlib.org/
#
# QuantLib is free software: you can redistribute it and/or modify it under the
# terms of the QuantLib license.  You should have received a copy of the
# license along with this program; if not, please email
# <quantlib-dev@lists.sf.net>. The license is also available online at
# <https://www.quantlib.org/license.shtml>.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE.  See the license for more details.

import QuantLib as ql
import pandas as pd

interactive = 'get_ipython' in globals()

trade_date = ql.Date(21,5,2009)
ql.Settings.instance().evaluationDate = trade_date

ql.IborCoupon.createAtParCoupons()

dep_tenors = [1,2,3,6,9,12]
dep_quotes = [0.003081,0.005525,0.007163,0.012413,0.014,0.015488]
isdaRateHelpers = [ql.DepositRateHelper(dep_quotes[i],
                                        dep_tenors[i]*ql.Period(ql.Monthly),
                                        2,ql.WeekendsOnly(),
                                        ql.ModifiedFollowing,
                                        False,ql.Actual360())
                   for i in range(len(dep_tenors))]

swap_tenors = [2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20, 25, 30]
swap_quotes = [0.011907,
               0.01699,
               0.021198,
               0.02444,
               0.026937,
               0.028967,
               0.030504,
               0.031719,
               0.03279,
               0.034535,
               0.036217,
               0.036981,
               0.037246,
               0.037605]

isda_ibor = ql.IborIndex('IsdaIbor',3*ql.Period(ql.Monthly),2,
                         ql.USDCurrency(),ql.WeekendsOnly(),
                         ql.ModifiedFollowing,False,ql.Actual360())
isdaRateHelpers = isdaRateHelpers + [
    ql.SwapRateHelper(swap_quotes[i],swap_tenors[i]*ql.Period(ql.Annual),
                      ql.WeekendsOnly(),ql.Semiannual,ql.ModifiedFollowing,
                      ql.Thirty360(ql.Thirty360.BondBasis),isda_ibor)
    for i in range(len(swap_tenors))]

spot_date = ql.WeekendsOnly().advance(trade_date, 2 * ql.Period(ql.Daily))

# Technically, the model requires the discount factor to be 1 at spot;
# but we can't do that and also have the discount curve extend back to
# the trade date.  For the time being, we'll keep discount = 1 at trade.
# The results match anyway.

swap_curve = ql.PiecewiseFlatForward(trade_date, isdaRateHelpers, ql.Actual365Fixed())
discountCurve = ql.YieldTermStructureHandle(swap_curve)

probabilityCurve = ql.RelinkableDefaultProbabilityTermStructureHandle()

termDates = [ql.Date(20, 6, 2010),
             ql.Date(20, 6, 2011),
             ql.Date(20, 6, 2012),
             ql.Date(20, 6, 2016),
             ql.Date(20, 6, 2019)]

spreads = [0.001, 0.1]
recoveries = [0.2, 0.4]

markitValues = [97798.29358, #0.001
                97776.11889, #0.001
                -914971.5977, #0.1
                -894985.6298, #0.1
                186921.3594, #0.001
                186839.8148, #0.001
                -1646623.672, #0.1
                -1579803.626, #0.1
                274298.9203,
                274122.4725,
                -2279730.93,
                -2147972.527,
                592420.2297,
                591571.2294,
                -3993550.206,
                -3545843.418,
                797501.1422,
                795915.9787,
                -4702034.688,
                -4042340.999]

tolerance = 1.0e-2

l = 0
distance = 0

data = []
upfront_date = ql.WeekendsOnly().advance(trade_date, 3 * ql.Period(ql.Daily))
for termDate in termDates:
    for spread in spreads:
        for recovery in recoveries:

            cdsSchedule = ql.Schedule(trade_date, termDate,
                                      3*ql.Period(ql.Monthly),
                                      ql.WeekendsOnly(),
                                      ql.Following, ql.Unadjusted,
                                      ql.DateGeneration.CDS, False)

            quotedTrade = ql.CreditDefaultSwap(
                ql.Protection.Buyer,10000000,0,spread,cdsSchedule,
                ql.Following,ql.Actual360(),True,True,trade_date,
                upfront_date, ql.FaceValueClaim(), ql.Actual360(True))

            h = quotedTrade.impliedHazardRate(0,discountCurve,ql.Actual365Fixed(),
                                              recovery,1e-10,
                                              ql.CreditDefaultSwap.ISDA)

            probabilityCurve.linkTo(
                ql.FlatHazardRate(0,ql.WeekendsOnly(),
                                  ql.makeQuoteHandle(h),
                                  ql.Actual365Fixed()))

            engine = ql.IsdaCdsEngine(probabilityCurve,recovery,discountCurve)
            conventionalTrade = ql.CreditDefaultSwap(
                ql.Protection.Buyer,10000000,0,0.01,cdsSchedule,
                ql.Following,ql.Actual360(),True,True,trade_date,
                upfront_date, ql.FaceValueClaim(), ql.Actual360(True))
            conventionalTrade.setPricingEngine(engine)

            upfront = conventionalTrade.notional() * conventionalTrade.fairUpfront()

            data.append(
                (termDate,
                 spread,
                 recovery,
                 h,
                 upfront,
                 markitValues[l],
                 abs(upfront-markitValues[l]),
                 abs(upfront-markitValues[l])<tolerance)
            )
            distance = distance + abs(upfront-markitValues[l])

            l = l + 1

df = pd.DataFrame(data, columns=["Term date", "Spread", "Recovery",
                                 "Hazard rate", "Upfront", "Markit value", "Distance", "Within tolerance"])
if not interactive:
    print(df)
df.style.format({'Spread': '{:.4%}', 'Hazard rate': '{:.2%}', 'Upfront': '{:.2f}',
                 'Markit value': '{:.2f}', 'Distance': '{:.6f}'})

print('total distance:',distance)