1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
|
"""
Copyright (C) 2020 Marcin Rybacki
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<https://www.quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
"""
import unittest
import QuantLib as ql
EPSILON = 1.e-9
# Hypothetical market data
EUR_ZERO_RATES = [(ql.Period(1, ql.Days), 0.0048),
(ql.Period(1, ql.Years), 0.0048),
(ql.Period(2, ql.Years), 0.00475),
(ql.Period(3, ql.Years), 0.005),
(ql.Period(5, ql.Years), 0.0055),
(ql.Period(10, ql.Years), 0.007)]
EUR_BEI_SWAP_RATES = [(ql.Period(1, ql.Years), 0.0301),
(ql.Period(2, ql.Years), 0.0299),
(ql.Period(3, ql.Years), 0.0305),
(ql.Period(5, ql.Years), 0.0315),
(ql.Period(10, ql.Years), 0.0355)]
# Source:
# https://ec.europa.eu/eurostat/web/products-datasets/-/teicp240.
EU_FIXING_DATA = [(ql.Date(1, ql.April, 2018), 103.11),
(ql.Date(1, ql.May, 2018), 103.64),
(ql.Date(1, ql.June, 2018), 103.76),
(ql.Date(1, ql.July, 2018), 103.41),
(ql.Date(1, ql.August, 2018), 103.58)]
CAL = ql.TARGET()
DAY_COUNTER = ql.ActualActual(ql.ActualActual.ISDA)
BDC = ql.ModifiedFollowing
VALUATION_DATE = CAL.adjust(ql.Date(10, ql.September, 2018))
OBSERVATION_LAG = ql.Period(3, ql.Months)
def create_inflation_swap_helper(
reference_date,
inflation_data,
inflation_index,
interpolation,
observation_lag=OBSERVATION_LAG,
calendar=CAL,
business_day_convention=BDC,
day_counter=DAY_COUNTER):
maturity = CAL.advance(reference_date, inflation_data[0])
quote = ql.makeQuoteHandle(inflation_data[1])
return ql.ZeroCouponInflationSwapHelper(
quote,
observation_lag,
maturity,
calendar,
business_day_convention,
day_counter,
inflation_index,
interpolation,
)
def build_nominal_term_structure(
reference_date,
nominal_data):
nominal_dc = ql.Actual365Fixed()
dates = [CAL.advance(reference_date, x[0]) for x in nominal_data]
rates = [x[1] for x in nominal_data]
return ql.ZeroCurve(dates, rates, nominal_dc)
def build_hicp_index(
fixing_data,
inflation_crv_handle):
index = ql.EUHICP(inflation_crv_handle)
for x in fixing_data:
# force override in case of multiple use
index.addFixing(x[0], x[1], True)
return index
SEASONAL = {ql.January: 1.0, ql.February: 1.01, ql.March: 1.011,
ql.April: 1.009, ql.May: 1.008, ql.June: 1.012,
ql.July: 1.0078, ql.August: 1.006,
ql.September: 1.0085, ql.October: 1.0096,
ql.November: 1.0067, ql.December: 1.0055}
def construct_seasonality(reference_date):
frequency = ql.Monthly
seasonality_base_date = ql.Date(1, ql.January, reference_date.year())
factors = list(SEASONAL.values())
return ql.MultiplicativePriceSeasonality(
seasonality_base_date, frequency, factors)
def build_inflation_term_structure(
reference_date,
zero_coupon_swaps_data,
inflation_index,
interpolation,
observation_lag=OBSERVATION_LAG,
include_seasonality=False):
helpers = [create_inflation_swap_helper(reference_date,
x,
inflation_index,
interpolation)
for x in zero_coupon_swaps_data]
cpi_term_structure = ql.PiecewiseZeroInflation(
reference_date,
inflation_index.lastFixingDate(),
inflation_index.frequency(),
DAY_COUNTER,
helpers)
if include_seasonality:
seasonality = construct_seasonality(reference_date)
cpi_term_structure.setSeasonality(seasonality)
return cpi_term_structure
def create_inflation_swap(
inflation_idx,
start_date,
end_date,
rate,
interpolation,
observation_lag=OBSERVATION_LAG,
nominal=1.e6,
payer=ql.Swap.Payer):
return ql.ZeroCouponInflationSwap(
payer,
nominal,
start_date,
end_date,
CAL,
BDC,
DAY_COUNTER,
rate,
inflation_idx,
observation_lag,
interpolation)
def interpolate_historic_index(
inflation_idx, fixing_date, observation_lag=OBSERVATION_LAG):
first_dt = ql.Date(1, fixing_date.month(), fixing_date.year())
second_dt = ql.Date.endOfMonth(fixing_date) + 1
slope_numerator = fixing_date - first_dt
slope_denominator = (
(second_dt + observation_lag) - (first_dt + observation_lag))
slope = float(slope_numerator) / float(slope_denominator)
return inflation_idx.fixing(first_dt) + slope * (
inflation_idx.fixing(second_dt) - inflation_idx.fixing(first_dt))
class InflationTest(unittest.TestCase):
def setUp(self):
ql.Settings.instance().evaluationDate = VALUATION_DATE
self.inflation_ts_handle = ql.RelinkableZeroInflationTermStructureHandle()
self.nominal_ts_handle = ql.RelinkableYieldTermStructureHandle()
self.nominal_ts_handle.linkTo(
build_nominal_term_structure(VALUATION_DATE, EUR_ZERO_RATES))
self.discount_engine = ql.DiscountingSwapEngine(self.nominal_ts_handle)
def test_par_swap_pricing_fom_indexation_without_seasonality(self):
"""Testing pricing of par inflation swap for First-Of-Month indexation"""
inflation_idx = build_hicp_index(
EU_FIXING_DATA, self.inflation_ts_handle)
inflation_ts = build_inflation_term_structure(
VALUATION_DATE,
EUR_BEI_SWAP_RATES,
inflation_idx,
ql.CPI.Flat)
self.inflation_ts_handle.linkTo(inflation_ts)
zciis = create_inflation_swap(
inflation_idx,
VALUATION_DATE,
CAL.advance(VALUATION_DATE, ql.Period(10, ql.Years)),
0.0355,
ql.CPI.Flat)
zciis.setPricingEngine(self.discount_engine)
npv = zciis.NPV()
# Check whether swap prices to par
fail_msg = """ Failed to price zero coupon inflation swap to par:
index: {inflation_idx}
end date: {end_date}
observation lag: {observation_lag}
npv: {npv}
expected npv: {expected_npv}
tolerance: {tolerance}
""".format(inflation_idx=inflation_idx.familyName(),
end_date=zciis.maturityDate(),
observation_lag=OBSERVATION_LAG,
npv=npv,
expected_npv=0.0,
tolerance=EPSILON)
self.assertTrue(
abs(npv) < EPSILON,
msg=fail_msg)
def test_inflation_leg_payment_fom_indexation_without_seasonality(self):
"""Testing inflation leg payment for First-Of-Month indexation"""
inflation_idx = build_hicp_index(
EU_FIXING_DATA, self.inflation_ts_handle)
inflation_ts = build_inflation_term_structure(
VALUATION_DATE,
EUR_BEI_SWAP_RATES,
inflation_idx,
ql.CPI.Flat)
self.inflation_ts_handle.linkTo(inflation_ts)
zciis = create_inflation_swap(
inflation_idx,
VALUATION_DATE,
CAL.advance(VALUATION_DATE, ql.Period(10, ql.Years)),
0.0355,
ql.CPI.Flat)
zciis.setPricingEngine(self.discount_engine)
inflation_cf = ql.as_indexed_cashflow(
zciis.inflationLeg()[0])
# Obtaining base index for the inflation swap
swap_base_dt = inflation_cf.baseDate()
swap_base_fixing = inflation_idx.fixing(swap_base_dt)
# Replicate fixing projection
fixing_dt = inflation_cf.fixingDate()
ts_base_dt = inflation_ts.baseDate()
ts_base_fixing = inflation_idx.fixing(ts_base_dt)
# Apply FOM indexation rule
effective_fixing_dt = ql.Date(
1, fixing_dt.month(), fixing_dt.year())
fraction = inflation_ts.dayCounter().yearFraction(
ts_base_dt, effective_fixing_dt)
t = inflation_ts.timeFromReference(effective_fixing_dt)
zero_rate = inflation_ts.zeroRate(t)
expected_fixing = ts_base_fixing * (
1.0 + zero_rate)**fraction
expected_inflation_leg_payment = (
expected_fixing / swap_base_fixing - 1.0) * inflation_cf.notional()
actual_inflation_leg_payment = inflation_cf.amount()
fail_msg = """ Failed to replicate inflation leg payment
for First-Of-Month indexation:
index: {inflation_idx}
end date: {end_date}
observation lag: {observation_lag}
inflation leg payment: {actual_payment}
replicated payment: {expected_payment}
tolerance: {tolerance}
""".format(inflation_idx=inflation_idx.familyName(),
end_date=zciis.maturityDate(),
observation_lag=OBSERVATION_LAG,
actual_payment=actual_inflation_leg_payment,
expected_payment=expected_inflation_leg_payment,
tolerance=EPSILON)
self.assertAlmostEqual(
first=actual_inflation_leg_payment,
second=expected_inflation_leg_payment,
delta=EPSILON,
msg=fail_msg)
def test_lagged_fixing_method(self):
"""Testing lagged fixing method"""
inflation_idx = build_hicp_index(
EU_FIXING_DATA, self.inflation_ts_handle)
inflation_ts = build_inflation_term_structure(
VALUATION_DATE,
EUR_BEI_SWAP_RATES,
inflation_idx,
ql.CPI.Flat)
self.inflation_ts_handle.linkTo(inflation_ts)
maturity_date = ql.Date(25, ql.October, 2027)
lag = ql.Period(3, ql.Months)
indexation = ql.CPI.Flat
actual_fixing = ql.CPI.laggedFixing(inflation_idx, maturity_date, lag, indexation)
expected_fixing = inflation_idx.fixing(ql.Date(1, ql.July, 2027))
fail_msg = """ Failed to replicate lagged fixing:
index: {inflation_idx}
actual fixing: {actual_fixing}
expected fixing: {expected_fixing}
tolerance: {tolerance}
""".format(inflation_idx=inflation_idx.familyName(),
actual_fixing=actual_fixing,
expected_fixing=expected_fixing,
tolerance=EPSILON)
self.assertAlmostEqual(
first=actual_fixing,
second=expected_fixing,
msg=fail_msg,
delta=EPSILON)
if __name__ == '__main__':
print("testing QuantLib", ql.__version__)
unittest.main(verbosity=2)
|