File: test_volatilities.py

package info (click to toggle)
quantlib-swig 1.40-4
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 2,280 kB
  • sloc: python: 6,024; java: 1,552; cs: 774; makefile: 349; sh: 22
file content (633 lines) | stat: -rw-r--r-- 25,032 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
"""
  Copyright (C) 2020 Marcin Rybacki
  Copyright (C) 2022 Skandinaviska Enskilda Banken AB (publ)

  This file is part of QuantLib, a free-software/open-source library
  for financial quantitative analysts and developers - http://quantlib.org/

  QuantLib is free software: you can redistribute it and/or modify it
  under the terms of the QuantLib license.  You should have received a
  copy of the license along with this program; if not, please email
  <quantlib-dev@lists.sf.net>. The license is also available online at
  <https://www.quantlib.org/license.shtml>.

  This program is distributed in the hope that it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
  FOR A PARTICULAR PURPOSE.  See the license for more details.
"""

import unittest
import math
import QuantLib as ql

TOLERANCE = 1e-10 if ql.IborCoupon.usingAtParCoupons() else 1e-6
SABR_ATM_TOLERANCE = 3.0e-4
SABR_SPREAD_TOLERANCE = 12.0e-4

CAL = ql.TARGET()

# Data source:
# https://quantlib-python-docs.readthedocs.io/en/latest/termstructures.html#swaption-volatility
ATM_NORM_VOLS = (
    (0.0086, 0.00128, 0.00195, 0.00269, 0.00327, 0.00361, 0.00387,
     0.00409, 0.00427, 0.00443, 0.00488, 0.00504, 0.00508, 0.00504),
    (0.0092, 0.00134, 0.00197, 0.00264, 0.00319, 0.00352, 0.00383,
     0.00402, 0.00419, 0.00431, 0.00478, 0.00499, 0.00507, 0.00503),
    (0.00112, 0.00153, 0.00210, 0.00276, 0.00327, 0.00353, 0.00384,
     0.00408, 0.00426, 0.00445, 0.00486, 0.00505, 0.00509, 0.00510),
    (0.00129, 0.00171, 0.00226, 0.00288, 0.00335, 0.00360, 0.00388,
     0.00410, 0.00430, 0.00446, 0.00487, 0.00506, 0.00511, 0.00510),
    (0.00146, 0.00187, 0.00246, 0.00301, 0.00342, 0.00369, 0.00393,
     0.00413, 0.00432, 0.00449, 0.00489, 0.00510, 0.00513, 0.00515),
    (0.00165, 0.00209, 0.00263, 0.00313, 0.00350, 0.00376, 0.00400,
     0.00420, 0.00437, 0.00453, 0.00488, 0.00509, 0.00514, 0.00517),
    (0.00209, 0.00253, 0.00300, 0.00340, 0.00370, 0.00395, 0.00419,
     0.00434, 0.00450, 0.00464, 0.00493, 0.00510, 0.00513, 0.00519),
    (0.00251, 0.00289, 0.00332, 0.00362, 0.00392, 0.00412, 0.00432,
     0.00447, 0.00460, 0.00473, 0.00496, 0.00510, 0.00513, 0.00516),
    (0.00340, 0.00366, 0.00392, 0.00411, 0.00432, 0.00445, 0.00461,
     0.00472, 0.00480, 0.00490, 0.00503, 0.00513, 0.00513, 0.00512),
    (0.00403, 0.00418, 0.00436, 0.00449, 0.00461, 0.00471, 0.00482,
     0.00492, 0.00499, 0.00505, 0.00512, 0.00513, 0.00509, 0.00507),
    (0.00440, 0.00448, 0.00460, 0.00471, 0.00484, 0.00491, 0.00499,
     0.00507, 0.00514, 0.00519, 0.00516, 0.00514, 0.00506, 0.00502),
    (0.00496, 0.00497, 0.00504, 0.00512, 0.00518, 0.00522, 0.00526,
     0.00529, 0.00533, 0.00538, 0.00526, 0.00517, 0.00504, 0.00496),
    (0.00539, 0.00537, 0.00540, 0.00542, 0.00544, 0.00545, 0.00545,
     0.00544, 0.00544, 0.00549, 0.00531, 0.00518, 0.00501, 0.00491),
    (0.00540, 0.00537, 0.00538, 0.00537, 0.00535, 0.00536, 0.00535,
     0.00533, 0.00535, 0.00537, 0.00514, 0.00498, 0.00479, 0.00466),
    (0.00528, 0.00524, 0.00526, 0.00523, 0.00522, 0.00523, 0.00520,
     0.00519, 0.00518, 0.00518, 0.00495, 0.00474, 0.00454, 0.00438),
    (0.00514, 0.00512, 0.00513, 0.00510, 0.00508, 0.00507, 0.00503,
     0.00499, 0.00498, 0.00497, 0.00476, 0.00453, 0.00431, 0.00414),
    (0.00496, 0.00496, 0.00497, 0.00495, 0.00495, 0.00492, 0.00486,
     0.00479, 0.00474, 0.00471, 0.00451, 0.00429, 0.00408, 0.00392))

ATM_NORM_VOL_OPT_TENORS = (ql.Period(1, ql.Months), ql.Period(2, ql.Months),
                           ql.Period(3, ql.Months), ql.Period(6, ql.Months),
                           ql.Period(9, ql.Months), ql.Period(1, ql.Years),
                           ql.Period(18, ql.Months), ql.Period(2, ql.Years),
                           ql.Period(3, ql.Years), ql.Period(4, ql.Years),
                           ql.Period(5, ql.Years), ql.Period(7, ql.Years),
                           ql.Period(10, ql.Years), ql.Period(15, ql.Years),
                           ql.Period(20, ql.Years), ql.Period(25, ql.Years),
                           ql.Period(30, ql.Years))

ATM_NORM_VOL_SWAP_TENORS = (ql.Period(1, ql.Years), ql.Period(2, ql.Years),
                            ql.Period(3, ql.Years), ql.Period(4, ql.Years),
                            ql.Period(5, ql.Years), ql.Period(6, ql.Years),
                            ql.Period(7, ql.Years), ql.Period(8, ql.Years),
                            ql.Period(9, ql.Years), ql.Period(10, ql.Years),
                            ql.Period(15, ql.Years), ql.Period(20, ql.Years),
                            ql.Period(25, ql.Years), ql.Period(30, ql.Years))

ATM_LOGNORM_VOLS = (
    (0.1300, 0.1560, 0.1390, 0.1220),
    (0.1440, 0.1580, 0.1460, 0.1260),
    (0.1600, 0.1590, 0.1470, 0.1290),
    (0.1640, 0.1470, 0.1370, 0.1220),
    (0.1400, 0.1300, 0.1250, 0.1100),
    (0.1130, 0.1090, 0.1070, 0.0930))

ATM_LOGNORM_VOL_OPT_TENORS = (ql.Period(1, ql.Months),
                              ql.Period(6, ql.Months),
                              ql.Period(3, ql.Years),
                              ql.Period(5, ql.Years),
                              ql.Period(10, ql.Years),
                              ql.Period(25, ql.Years))

ATM_LOGNORM_VOL_SWAP_TENORS = (ql.Period(1, ql.Years),
                               ql.Period(3, ql.Years),
                               ql.Period(10, ql.Years),
                               ql.Period(25, ql.Years))

SMILE_OPT_TENORS = (ql.Period(1, ql.Years),
                    ql.Period(10, ql.Years),
                    ql.Period(30, ql.Years))

SMILE_SWAP_TENORS = (ql.Period(2, ql.Years),
                     ql.Period(10, ql.Years),
                     ql.Period(30, ql.Years))

STRIKE_SPREADS = (-0.02, -0.005, 0.0, 0.005, 0.02)

NORM_VOL_SPREADS = (
    (-0.0006, 0.0005, 0.0, 0.0006, 0.0006),
    (-0.0006, 0.0005, 0.0, 0.00065, 0.0006),
    (-0.0006, 0.0001, 0.0, 0.0006, 0.0006),
    (-0.0006, 0.0005, 0.0, 0.0006, 0.0006),
    (-0.0006, 0.0005, 0.0, 0.0006, 0.0006),
    (-0.0003, 0.0005, 0.0, 0.0003, 0.0003),
    (-0.0006, 0.0005, 0.0, 0.0006, 0.0006),
    (-0.0006, 0.0005, 0.0, 0.0006, 0.0006),
    (-0.0003, 0.0005, 0.0, 0.0003, 0.0003))

LOGNORM_VOL_SPREADS = (
    (0.0599, 0.0049, 0.0000, -0.0001, 0.0127),
    (0.0729, 0.0086, 0.0000, -0.0024, 0.0098),
    (0.0738, 0.0102, 0.0000, -0.0039, 0.0065),
    (0.0465, 0.0063, 0.0000, -0.0032, -0.0010),
    (0.0558, 0.0084, 0.0000, -0.0050, -0.0057),
    (0.0576, 0.0083, 0.0000, -0.0043, -0.0014),
    (0.0437, 0.0059, 0.0000, -0.0030, -0.0006),
    (0.0533, 0.0078, 0.0000, -0.0045, -0.0046),
    (0.0545, 0.0079, 0.0000, -0.0042, -0.0020))

ZERO_COUPON_DATA = (
    (ql.Period(1, ql.Days), 0.013),
    (ql.Period(1, ql.Years), 0.013),
    (ql.Period(2, ql.Years), 0.015),
    (ql.Period(3, ql.Years), 0.016),
    (ql.Period(4, ql.Years), 0.017),
    (ql.Period(5, ql.Years), 0.019),
    (ql.Period(10, ql.Years), 0.021),
    (ql.Period(15, ql.Years), 0.024),
    (ql.Period(20, ql.Years), 0.026),
    (ql.Period(30, ql.Years), 0.029))

NORM_VOL_MATRIX = ql.SwaptionVolatilityMatrix(
    CAL,
    ql.ModifiedFollowing,
    ATM_NORM_VOL_OPT_TENORS,
    ATM_NORM_VOL_SWAP_TENORS,
    ql.Matrix(ATM_NORM_VOLS),
    ql.Actual365Fixed(),
    False,
    ql.Normal)

LOGNORM_VOL_MATRIX = ql.SwaptionVolatilityMatrix(
    CAL,
    ql.ModifiedFollowing,
    ATM_LOGNORM_VOL_OPT_TENORS,
    ATM_LOGNORM_VOL_SWAP_TENORS,
    ql.Matrix(ATM_LOGNORM_VOLS),
    ql.Actual365Fixed(),
    False,
    ql.ShiftedLognormal)


def build_euribor_swap_idx(
        projection_curve_handle):
    return ql.EuriborSwapIsdaFixA(ql.Period(1, ql.Years),
                                  projection_curve_handle)


def build_nominal_term_structure(valuation_date, nominal_quotes):
    dates, rates = zip(*[(CAL.advance(valuation_date, x[0]), x[1])
                         for x in nominal_quotes])
    crv = ql.ZeroCurve(dates, rates, ql.Actual365Fixed())
    crv.enableExtrapolation()
    return crv


def build_linear_swaption_cube(
        volatility_matrix,
        spread_opt_tenors,
        spread_swap_tenors,
        strike_spreads,
        vol_spreads,
        swap_index_base,
        short_swap_index_base=None,
        vega_weighted_smile_fit=False):
    vol_spreads = [[ql.makeQuoteHandle(v) for v in row]
                   for row in vol_spreads]
    cube = ql.InterpolatedSwaptionVolatilityCube(
        ql.SwaptionVolatilityStructureHandle(volatility_matrix),
        spread_opt_tenors,
        spread_swap_tenors,
        strike_spreads,
        vol_spreads,
        swap_index_base,
        short_swap_index_base if short_swap_index_base else swap_index_base,
        vega_weighted_smile_fit)
    cube.enableExtrapolation()
    return cube


def sabr_parameters_guess(number_of_options, number_of_swaps):
    n_elements = number_of_options * number_of_swaps
    guess = n_elements * [0]
    for n in range(n_elements):
        guess[n] = (ql.makeQuoteHandle(0.2),
                    ql.makeQuoteHandle(0.5),
                    ql.makeQuoteHandle(0.4),
                    ql.makeQuoteHandle(0.0))
    return guess


def build_sabr_swaption_cube(
        volatility_matrix,
        spread_opt_tenors,
        spread_swap_tenors,
        strike_spreads,
        vol_spreads,
        swap_index_base,
        short_swap_index_base=None,
        vega_weighted_smile_fit=False,
        is_parameter_fixed=(False, False, False, False),
        is_atm_calibrated=True):
    v_spreads = [[ql.makeQuoteHandle(v) for v in row]
                 for row in vol_spreads]
    guess = sabr_parameters_guess(
        len(spread_opt_tenors), len(spread_swap_tenors))
    cube = ql.SabrSwaptionVolatilityCube(
        ql.SwaptionVolatilityStructureHandle(volatility_matrix),
        spread_opt_tenors,
        spread_swap_tenors,
        strike_spreads,
        v_spreads,
        swap_index_base,
        short_swap_index_base if short_swap_index_base else swap_index_base,
        vega_weighted_smile_fit,
        guess,
        is_parameter_fixed,
        is_atm_calibrated)
    cube.enableExtrapolation()
    return cube


class SwaptionVolatilityCubeTest(unittest.TestCase):
    def setUp(self):
        self.today = CAL.adjust(ql.Date.todaysDate())
        ql.Settings.instance().evaluationDate = self.today

        curve_handle = ql.RelinkableYieldTermStructureHandle()
        curve = build_nominal_term_structure(self.today, ZERO_COUPON_DATA)
        curve_handle.linkTo(curve)

        self.idx = ql.Euribor6M(curve_handle)
        self.swap_idx = build_euribor_swap_idx(curve_handle)
        self.swap_engine = ql.DiscountingSwapEngine(curve_handle)

    def tearDown(self):
        ql.Settings.instance().evaluationDate = ql.Date()

    def _get_fair_rate(self, exercise_date, swap_tenor):
        start_date = CAL.advance(exercise_date, ql.Period(2, ql.Days))
        underlying = ql.MakeVanillaSwap(
            swap_tenor, self.idx, 0.0, ql.Period(0, ql.Days),
            effectiveDate=start_date,
            fixedLegTenor=ql.Period(1, ql.Years),
            fixedLegDayCount=ql.Thirty360(ql.Thirty360.BondBasis),
            floatingLegSpread=0.0,
            swapType=ql.Swap.Receiver)
        underlying.setPricingEngine(self.swap_engine)
        return underlying.fairRate()

    def _assert_atm_strike(
            self, cube, interpolation, vol_type):
        opt_tenor = ql.Period(1, ql.Years)
        swap_tenor = ql.Period(10, ql.Years)
        exercise_date = cube.optionDateFromTenor(opt_tenor)
        expected_atm_strike = self._get_fair_rate(exercise_date, swap_tenor)
        actual_atm_strike = cube.atmStrike(exercise_date, swap_tenor)
        fail_msg = """ ATM strike test failed for:
                        cube interpolation: {interpolation}
                        volatility_type: {vol_type}
                        option tenor: {option_tenor}
                        swap tenor: {swap_tenor}
                        strike: {strike}
                        replicated strike: {replicated_strike}
                   """.format(interpolation=interpolation,
                              vol_type=vol_type,
                              option_tenor=opt_tenor,
                              swap_tenor=swap_tenor,
                              strike=actual_atm_strike,
                              replicated_strike=expected_atm_strike)
        self.assertAlmostEqual(
            first=actual_atm_strike,
            second=expected_atm_strike,
            delta=TOLERANCE,
            msg=fail_msg)

    def _assert_atm_vol(
            self,
            cube,
            opt_tenor,
            swap_tenor,
            expected_vol,
            interpolation,
            vol_type,
            epsilon=TOLERANCE):
        option_date = cube.optionDateFromTenor(opt_tenor)
        strike = cube.atmStrike(option_date, swap_tenor)
        actual_vol = cube.volatility(option_date, swap_tenor, strike)
        fail_msg = """ ATM vol test failed for:
                        cube interpolation: {interpolation}
                        volatility_type: {vol_type}
                        option tenor: {option_tenor}
                        swap tenor: {swap_tenor}
                        strike: {strike}
                        volatility: {vol}
                        expected volatility: {expected_vol}
                        epsilon: {eps}
                   """.format(interpolation=interpolation,
                              vol_type=vol_type,
                              option_tenor=opt_tenor,
                              swap_tenor=swap_tenor,
                              strike=strike,
                              vol=actual_vol,
                              expected_vol=expected_vol,
                              eps=epsilon)
        self.assertAlmostEqual(
            first=actual_vol,
            second=expected_vol,
            delta=epsilon,
            msg=fail_msg)

    def _assert_vol_spread(
            self,
            cube,
            opt_tenor,
            swap_tenor,
            strike_spread,
            expected_vol,
            interpolation,
            vol_type,
            epsilon=TOLERANCE):
        option_date = cube.optionDateFromTenor(opt_tenor)
        strike = cube.atmStrike(option_date, swap_tenor) + strike_spread
        actual_vol = cube.volatility(option_date, swap_tenor, strike)
        fail_msg = """ Vol spread test failed for:
                        cube interpolation: {interpolation}
                        volatility_type: {vol_type}
                        option tenor: {option_tenor}
                        swap tenor: {swap_tenor}
                        strike: {strike}
                        volatility: {vol}
                        expected volatility: {expected_vol}
                        epsilon: {eps}
                   """.format(interpolation=interpolation,
                              vol_type=vol_type,
                              option_tenor=opt_tenor,
                              swap_tenor=swap_tenor,
                              strike=strike,
                              vol=actual_vol,
                              expected_vol=expected_vol,
                              eps=epsilon)
        self.assertAlmostEqual(
            first=actual_vol,
            second=expected_vol,
            delta=epsilon,
            msg=fail_msg)

    def test_linear_normal_cube_at_the_money_strike(self):
        """Testing ATM strike for linearly interpolated normal vol cube"""
        linear_cube = build_linear_swaption_cube(
            NORM_VOL_MATRIX,
            SMILE_OPT_TENORS,
            SMILE_SWAP_TENORS,
            STRIKE_SPREADS,
            NORM_VOL_SPREADS,
            self.swap_idx)
        self._assert_atm_strike(
            cube=linear_cube,
            interpolation='linear',
            vol_type='normal')

    def test_linear_lognormal_cube_at_the_money_strike(self):
        """Testing ATM strike for linearly interpolated log-normal vol cube"""
        linear_cube = build_linear_swaption_cube(
            LOGNORM_VOL_MATRIX,
            SMILE_OPT_TENORS,
            SMILE_SWAP_TENORS,
            STRIKE_SPREADS,
            LOGNORM_VOL_SPREADS,
            self.swap_idx)
        self._assert_atm_strike(
            cube=linear_cube,
            interpolation='linear',
            vol_type='log-normal')

    def test_sabr_lognormal_cube_at_the_money_strike(self):
        """Testing ATM strike for SABR interpolated log-normal vol cube"""
        sabr_cube = build_sabr_swaption_cube(
            LOGNORM_VOL_MATRIX,
            SMILE_OPT_TENORS,
            SMILE_SWAP_TENORS,
            STRIKE_SPREADS,
            LOGNORM_VOL_SPREADS,
            self.swap_idx)
        self._assert_atm_strike(
            cube=sabr_cube,
            interpolation='SABR',
            vol_type='log-normal')

    def test_linear_normal_cube_at_the_money_vol(self):
        """Testing ATM volatility for linearly interpolated normal vol cube"""
        linear_cube = build_linear_swaption_cube(
            NORM_VOL_MATRIX,
            SMILE_OPT_TENORS,
            SMILE_SWAP_TENORS,
            STRIKE_SPREADS,
            NORM_VOL_SPREADS,
            self.swap_idx)
        self._assert_atm_vol(
            cube=linear_cube,
            opt_tenor=ql.Period(1, ql.Years),
            swap_tenor=ql.Period(10, ql.Years),
            expected_vol=0.00453,
            interpolation='linear',
            vol_type='normal')

    def test_linear_lognormal_cube_at_the_money_vol(self):
        """Testing ATM volatility for linearly interpolated log-normal vol cube"""
        linear_cube = build_linear_swaption_cube(
            LOGNORM_VOL_MATRIX,
            SMILE_OPT_TENORS,
            SMILE_SWAP_TENORS,
            STRIKE_SPREADS,
            LOGNORM_VOL_SPREADS,
            self.swap_idx)
        self._assert_atm_vol(
            cube=linear_cube,
            opt_tenor=ql.Period(10, ql.Years),
            swap_tenor=ql.Period(10, ql.Years),
            expected_vol=0.1250,
            interpolation='linear',
            vol_type='log-normal')

    def test_sabr_lognormal_cube_at_the_money_vol(self):
        """Testing ATM volatility for SABR interpolated log-normal vol cube"""
        sabr_cube = build_sabr_swaption_cube(
            LOGNORM_VOL_MATRIX,
            SMILE_OPT_TENORS,
            SMILE_SWAP_TENORS,
            STRIKE_SPREADS,
            LOGNORM_VOL_SPREADS,
            self.swap_idx)
        self._assert_atm_vol(
            cube=sabr_cube,
            opt_tenor=ql.Period(10, ql.Years),
            swap_tenor=ql.Period(10, ql.Years),
            expected_vol=0.1250,
            interpolation='SABR',
            vol_type='log-normal',
            epsilon=SABR_ATM_TOLERANCE)

    def test_linear_normal_cube_spread_vol(self):
        """Testing spread volatility for linearly interpolated normal cube"""
        linear_cube = build_linear_swaption_cube(
            NORM_VOL_MATRIX,
            SMILE_OPT_TENORS,
            SMILE_SWAP_TENORS,
            STRIKE_SPREADS,
            NORM_VOL_SPREADS,
            self.swap_idx)
        self._assert_vol_spread(
            cube=linear_cube,
            opt_tenor=ql.Period(1, ql.Years),
            swap_tenor=ql.Period(10, ql.Years),
            strike_spread=-0.02,
            expected_vol=0.00453 - 0.0006,
            interpolation='linear',
            vol_type='normal')

    def test_linear_lognormal_cube_spread_vol(self):
        """Testing spread volatility for linearly interpolated log-normal cube"""
        linear_cube = build_linear_swaption_cube(
            LOGNORM_VOL_MATRIX,
            SMILE_OPT_TENORS,
            SMILE_SWAP_TENORS,
            STRIKE_SPREADS,
            LOGNORM_VOL_SPREADS,
            self.swap_idx)
        self._assert_vol_spread(
            cube=linear_cube,
            opt_tenor=ql.Period(10, ql.Years),
            swap_tenor=ql.Period(10, ql.Years),
            strike_spread=-0.02,
            expected_vol=0.125 + 0.0558,
            interpolation='linear',
            vol_type='log-normal')

    def test_sabr_lognormal_cube_spread_vol(self):
        """Testing spread volatility for SABR interpolated log-normal cube"""
        sabr_cube = build_sabr_swaption_cube(
            LOGNORM_VOL_MATRIX,
            SMILE_OPT_TENORS,
            SMILE_SWAP_TENORS,
            STRIKE_SPREADS,
            LOGNORM_VOL_SPREADS,
            self.swap_idx)
        self._assert_vol_spread(
            cube=sabr_cube,
            opt_tenor=ql.Period(10, ql.Years),
            swap_tenor=ql.Period(10, ql.Years),
            strike_spread=-0.02,
            expected_vol=0.125 + 0.0558,
            interpolation='SABR',
            vol_type='log-normal',
            epsilon=SABR_SPREAD_TOLERANCE)


class SviSmileSectionTest(unittest.TestCase):
    def setUp(self):
        ql.Settings.instance().evaluationDate = ql.Date(3, ql.May, 2022)

    def tearDown(self):
        # The objects created in this test are not immediately garbage-collected
        # by PyPy, and can throw errors when the global evaluation date changes.
        # Thus, we need to force a collection when we're done with them.
        import gc
        gc.collect()

    def test_svi_smile_section(self):
        """Testing the SviSmileSection against already fitted parameters"""
        expiry_date = ql.Date(16, ql.December, 2022)
        forward = 100
        atm_vol = 0.325819
        # parameters = a, b, sigma, rho, m
        svi_parameters = [-0.651304, 0.986546, 0.838493, 0.520853, 0.695177]

        smile = ql.SviSmileSection(expiry_date, forward, svi_parameters)

        self.assertAlmostEqual(smile.volatility(forward), atm_vol, places=5)
        self.assertAlmostEqual(smile.volatility(257.328), 0.739775, places=5)

    def test_svi_interpolated_smile_section(self):
        """Testing the SviInterpolatedSmileSection's parameter fitting against given vols"""
        expiry_date = ql.Date(16, ql.December, 2022)
        forward = 100
        strikes = [25.6134, 48.5585, 71.5027, 94.4478, 117.3920, 140.3372, 163.2814, 186.2265, 209.1707, 232.1149]
        has_floating_strikes = False
        atm_vol = 0.325819
        vols = [0.881504, 0.627807, 0.456964, 0.343740, 0.297482, 0.321816, 0.390772, 0.476758, 0.565635, 0.651507]

        a = -0.6
        b = 0.9
        sigma = 0.8
        rho = 0.5
        m = 0.6

        interpolated_smile = ql.SviInterpolatedSmileSection(
            expiry_date, forward, strikes, has_floating_strikes, atm_vol, vols,
            a, b, sigma, rho, m,
            False, False, False, False, False
        )

        self.assertAlmostEqual(interpolated_smile.volatility(forward), atm_vol, places=5)
        self.assertAlmostEqual(interpolated_smile.volatility(257.328), 0.739775, places=5)


class AndreasenHugeVolatilityTest(unittest.TestCase):
    def testLocalVolCalibration(self):
        """ Testing Andreasen-Huge Local Volatility calibration"""

        today = ql.Settings.instance().evaluationDate

        spot = ql.makeQuoteHandle(100)

        dc = ql.Actual365Fixed()
        qTS = ql.YieldTermStructureHandle(ql.FlatForward(today, 0.025, dc))
        rTS = ql.YieldTermStructureHandle(ql.FlatForward(today, 0.05, dc))

        vol_data = [
            # maturity in days, strike, volatility
            (30, 75, 0.13),
            (30, 100, 0.26),
            (30, 125, 0.3),
            (180, 80, 0.4),
            (180, 150, 0.6),
            (365, 110, 0.5)]

        calibration_set = ql.CalibrationSet(
            [(
                ql.VanillaOption(
                    ql.PlainVanillaPayoff(ql.Option.Call, strike),
                    ql.EuropeanExercise(today + ql.Period(maturity_in_days, ql.Days))
                ),
                ql.SimpleQuote(volatility)
            ) for maturity_in_days, strike, volatility in vol_data]
        )

        local_vol = ql.LocalVolTermStructureHandle(
            ql.AndreasenHugeLocalVolAdapter(
                ql.AndreasenHugeVolatilityInterpl(calibration_set, spot, rTS, qTS)
            )
        )

        option = calibration_set[-2][0]  # maturity in days: 180, strike: 150, vol: 0.6

        dummy_vol = ql.BlackVolTermStructureHandle()
        local_vol_process = ql.GeneralizedBlackScholesProcess(spot, qTS, rTS, dummy_vol, local_vol)

        option.setPricingEngine(ql.MCEuropeanEngine(
            local_vol_process, "lowdiscrepancy",
            timeSteps=75, brownianBridge=True, requiredSamples=16000, seed=42)
        )

        t = dc.yearFraction(today, option.exercise().lastDate())
        fwd = spot.value() * qTS.discount(t) / rTS.discount(t)
        vol = calibration_set[-2][1].value()

        expected = ql.BlackCalculator(
            ql.as_plain_vanilla_payoff(option.payoff()), fwd, vol * math.sqrt(t), rTS.discount(t)).value()

        self.assertAlmostEqual(expected, option.NPV(), delta=0.2)


if __name__ == "__main__":
    print("testing QuantLib", ql.__version__)
    unittest.main(verbosity=2)