1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
|
/*!
Copyright (C) 2000, 2001, 2002 RiskMap srl
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it under the
terms of the QuantLib license. You should have received a copy of the
license along with this program; if not, please email ferdinando@ametrano.net
The license is also available online at http://quantlib.org/html/license.html
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
//! $Id: EuropeanOption.cpp,v 1.15 2002/01/16 14:40:40 nando Exp $
#include <ql/quantlib.hpp>
using namespace QuantLib;
using QuantLib::Pricers::EuropeanOption;
using QuantLib::Pricers::McEuropean;
using QuantLib::Pricers::FdEuropean;
// helper function for option payoff: MAX((stike-underlying),0), etc.
using QuantLib::Pricers::ExercisePayoff;
// This will be included in the library after a bit of redesign
class Payoff : public QL::ObjectiveFunction{
public:
Payoff(Time maturity,
double strike,
double s0,
double sigma,
Rate r)
: maturity_(maturity),
strike_(strike),
s0_(s0),
sigma_(sigma),r_(r){}
double operator()(double x) const {
double nuT = (r_-0.5*sigma_*sigma_)*maturity_;
return QL_EXP(-r_*maturity_)
*ExercisePayoff(Option::Call, s0_*QL_EXP(x), strike_)
*QL_EXP(-(x - nuT)*(x -nuT)/(2*sigma_*sigma_*maturity_))
/QL_SQRT(2.0*3.141592*sigma_*sigma_*maturity_);
}
private:
Time maturity_;
double strike_;
double s0_;
double sigma_;
Rate r_;
};
int main(int argc, char* argv[])
{
try {
// our option
double underlying = 102;
double strike = 100; // at the money
Spread dividendYield = 0.0; // no dividends
Rate riskFreeRate = 0.05; // 5%
Time maturity = 0.25; // 3 months
double volatility = 0.20; // 20%
std::cout << "Time to maturity = " << maturity
<< std::endl;
std::cout << "Underlying price = " << underlying
<< std::endl;
std::cout << "Strike = " << strike
<< std::endl;
std::cout << "Risk-free interest rate = " << riskFreeRate
<< std::endl;
std::cout << "Volatility = " << volatility
<< std::endl;
std::cout << std::endl;
// write column headings
std::cout << "Method\t\tValue\tEstimatedError\tDiscrepancy"
"\tRel. Discr." << std::endl;
// first method: Black Scholes analytic solution
std::string method ="Black Scholes";
double value = EuropeanOption(Option::Call, underlying, strike,
dividendYield, riskFreeRate, maturity, volatility).value();
double estimatedError = 0.0;
double discrepancy = 0.0;
double relativeDiscrepancy = 0.0;
std::cout << method << "\t"
<< DoubleFormatter::toString(value, 4) << "\t"
<< DoubleFormatter::toString(estimatedError, 4) << "\t\t"
<< DoubleFormatter::toString(discrepancy, 6) << "\t"
<< DoubleFormatter::toString(relativeDiscrepancy, 6)
<< std::endl;
// store the Black Scholes value as the correct one
double rightValue = value;
// second method: Call-Put parity
method ="Call-Put parity";
value = EuropeanOption(Option::Put, underlying, strike,
dividendYield, riskFreeRate, maturity, volatility).value()
+ underlying - strike*QL_EXP(- riskFreeRate*maturity);
discrepancy = QL_FABS(value-rightValue);
relativeDiscrepancy = discrepancy/rightValue;
std::cout << method << "\t"
<< DoubleFormatter::toString(value, 4) << "\t"
<< "N/A\t\t"
<< discrepancy << "\t"
<< DoubleFormatter::toString(relativeDiscrepancy, 6)
<< std::endl;
// third method: Integral
method ="Integral";
using QuantLib::Math::SegmentIntegral;
Payoff po(maturity, strike, underlying, volatility, riskFreeRate);
SegmentIntegral integrator(5000);
double nuT = (riskFreeRate - 0.5*volatility*volatility)*maturity;
double infinity = 10.0*volatility*QL_SQRT(maturity);
value = integrator(po, nuT-infinity, nuT+infinity);
discrepancy = QL_FABS(value-rightValue);
relativeDiscrepancy = discrepancy/rightValue;
std::cout << method << "\t"
<< DoubleFormatter::toString(value, 4) << "\t"
<< "N/A\t\t"
<< DoubleFormatter::toString(discrepancy, 6) << "\t"
<< DoubleFormatter::toString(relativeDiscrepancy, 6)
<< std::endl;
// fourth method: Finite Differences
method ="Finite Diff.";
Size grid = 100;
value = FdEuropean(Option::Call, underlying, strike,
dividendYield, riskFreeRate, maturity, volatility, grid).value();
discrepancy = QL_FABS(value-rightValue);
relativeDiscrepancy = discrepancy/rightValue;
std::cout << method << "\t"
<< DoubleFormatter::toString(value, 4) << "\t"
<< "N/A\t\t"
<< DoubleFormatter::toString(discrepancy, 6) << "\t"
<< DoubleFormatter::toString(relativeDiscrepancy, 6)
<< std::endl;
// fifth method: Monte Carlo (crude)
method ="MC (crude)";
bool antitheticVariance = false;
McEuropean mcEur(Option::Call, underlying, strike, dividendYield,
riskFreeRate, maturity, volatility, antitheticVariance);
// let's require a tolerance of 0.002%
value = mcEur.value(0.002);
estimatedError = mcEur.errorEstimate();
discrepancy = QL_FABS(value-rightValue);
relativeDiscrepancy = discrepancy/rightValue;
std::cout << method << "\t"
<< DoubleFormatter::toString(value, 4) << "\t"
<< DoubleFormatter::toString(estimatedError, 4) << "\t\t"
<< DoubleFormatter::toString(discrepancy, 6) << "\t"
<< DoubleFormatter::toString(relativeDiscrepancy, 6)
<< std::endl;
// sixth method: Monte Carlo with antithetic variance reduction
method ="MC (antithetic)";
// let's use the same number of samples as in the crude Monte Carlo
Size nSamples = mcEur.sampleAccumulator().samples();
antitheticVariance = true;
McEuropean mcEur2(Option::Call, underlying, strike, dividendYield,
riskFreeRate, maturity, volatility, antitheticVariance);
value = mcEur2.valueWithSamples(nSamples);
estimatedError = mcEur2.errorEstimate();
discrepancy = QL_FABS(value-rightValue);
relativeDiscrepancy = discrepancy/rightValue;
std::cout << method << "\t"
<< DoubleFormatter::toString(value, 4) << "\t"
<< DoubleFormatter::toString(estimatedError, 4) << "\t\t"
<< DoubleFormatter::toString(discrepancy, 6) << "\t"
<< DoubleFormatter::toString(relativeDiscrepancy, 6)
<< std::endl;
return 0;
} catch (std::exception& e) {
std::cout << e.what() << std::endl;
return 1;
} catch (...) {
std::cout << "unknown error" << std::endl;
return 1;
}
}
|