File: Replication.cpp

package info (click to toggle)
quantlib 0.9.0.20071224-1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 22,216 kB
  • ctags: 34,951
  • sloc: cpp: 167,744; ansic: 21,483; sh: 8,947; makefile: 3,327; lisp: 86
file content (391 lines) | stat: -rw-r--r-- 17,285 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*!
 Copyright (C) 2006, 2007 StatPro Italia srl

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*  This example showcases the CompositeInstrument class. Such class
    is used to build a static replication of a down-and-out barrier
    option, as outlined in Section 10.2 of Mark Joshi's "The Concepts
    and Practice of Mathematical Finance" to which we refer the
    reader.
*/

// the only header you need to use QuantLib
#include <ql/quantlib.hpp>

#ifdef BOOST_MSVC
/* Uncomment the following lines to unmask floating-point
   exceptions. Warning: unpredictable results can arise...

   See http://www.wilmott.com/messageview.cfm?catid=10&threadid=9481
   Is there anyone with a definitive word about this?
*/
// #include <float.h>
// namespace { unsigned int u = _controlfp(_EM_INEXACT, _MCW_EM); }
#endif

#include <boost/timer.hpp>
#include <iostream>
#include <iomanip>

using namespace QuantLib;

#if defined(QL_ENABLE_SESSIONS)
namespace QuantLib {

    Integer sessionId() { return 0; }

}
#endif

int main(int, char* []) {

    try {

        boost::timer timer;
        std::cout << std::endl;

        Date today(29, May, 2006);
        Settings::instance().evaluationDate() = today;

        // the option to replicate
        Barrier::Type barrierType = Barrier::DownOut;
        Real barrier = 70.0;
        Real rebate = 0.0;
        Option::Type type = Option::Put;
        Real underlyingValue = 100.0;
        boost::shared_ptr<SimpleQuote> underlying(
                                            new SimpleQuote(underlyingValue));
        Real strike = 100.0;
        boost::shared_ptr<SimpleQuote> riskFreeRate(new SimpleQuote(0.04));
        boost::shared_ptr<SimpleQuote> volatility(new SimpleQuote(0.20));
        Date maturity = today + 1*Years;

        std::cout << std::endl ;

        // write column headings
        Size widths[] = { 45, 15, 15 };
        Size totalWidth = widths[0]+widths[1]+widths[2];
        std::string rule(totalWidth, '-'), dblrule(totalWidth, '=');

        std::cout << dblrule << std::endl;
        std::cout << "Initial market conditions" << std::endl;
        std::cout << dblrule << std::endl;
        std::cout << std::setw(widths[0]) << std::left << "Option"
                  << std::setw(widths[1]) << std::left << "NPV"
                  << std::setw(widths[2]) << std::left << "Error"
                  << std::endl;
        std::cout << rule << std::endl;

        // bootstrap the yield/vol curves
        DayCounter dayCounter = Actual365Fixed();
        Handle<Quote> h1(riskFreeRate);
        Handle<Quote> h2(volatility);
        Handle<YieldTermStructure> flatRate(
            boost::shared_ptr<YieldTermStructure>(
                                  new FlatForward(0, NullCalendar(),
                                                  h1, dayCounter)));
        Handle<BlackVolTermStructure> flatVol(
            boost::shared_ptr<BlackVolTermStructure>(
                               new BlackConstantVol(0, NullCalendar(),
                                                    h2, dayCounter)));

        // instantiate the option
        boost::shared_ptr<Exercise> exercise(
                                         new EuropeanExercise(maturity));
        boost::shared_ptr<StrikedTypePayoff> payoff(
                                        new PlainVanillaPayoff(type, strike));

        boost::shared_ptr<BlackScholesProcess> bsProcess(
                            new BlackScholesProcess(Handle<Quote>(underlying),
                                                    flatRate, flatVol));

        boost::shared_ptr<PricingEngine> barrierEngine(
                                        new AnalyticBarrierEngine(bsProcess));
        boost::shared_ptr<PricingEngine> europeanEngine(
                                       new AnalyticEuropeanEngine(bsProcess));

        BarrierOption referenceOption(barrierType, barrier, rebate,
                                      payoff, exercise);
        referenceOption.setPricingEngine(barrierEngine);

        Real referenceValue = referenceOption.NPV();

        std::cout << std::setw(widths[0]) << std::left
                  << "Original barrier option"
                  << std::fixed
                  << std::setw(widths[1]) << std::left << referenceValue
                  << std::setw(widths[2]) << std::left << "N/A"
                  << std::endl;

        // Replicating portfolios
        CompositeInstrument portfolio1, portfolio2, portfolio3;

        // Final payoff first (the same for all portfolios):
        // as shown in Joshi, a put struck at K...
        boost::shared_ptr<Instrument> put1(
                                        new EuropeanOption(payoff, exercise));
        put1->setPricingEngine(europeanEngine);
        portfolio1.add(put1);
        portfolio2.add(put1);
        portfolio3.add(put1);
        // ...minus a digital put struck at B of notional K-B...
        boost::shared_ptr<StrikedTypePayoff> digitalPayoff(
                          new CashOrNothingPayoff(Option::Put, barrier, 1.0));
        boost::shared_ptr<Instrument> digitalPut(
                                 new EuropeanOption(digitalPayoff, exercise));
        digitalPut->setPricingEngine(europeanEngine);
        portfolio1.subtract(digitalPut, strike-barrier);
        portfolio2.subtract(digitalPut, strike-barrier);
        portfolio3.subtract(digitalPut, strike-barrier);
        // ...minus a put option struck at B.
        boost::shared_ptr<StrikedTypePayoff> lowerPayoff(
                                new PlainVanillaPayoff(Option::Put, barrier));
        boost::shared_ptr<Instrument> put2(
                                   new EuropeanOption(lowerPayoff, exercise));
        put2->setPricingEngine(europeanEngine);
        portfolio1.subtract(put2);
        portfolio2.subtract(put2);
        portfolio3.subtract(put2);

        // Now we use puts struck at B to kill the value of the
        // portfolio on a number of points (B,t).  For the first
        // portfolio, we'll use 12 dates at one-month's distance.
        Integer i;
        for (i=12; i>=1; i--) {
            // First, we instantiate the option...
            Date innerMaturity = today + i*Months;
            boost::shared_ptr<Exercise> innerExercise(
                                         new EuropeanExercise(innerMaturity));
            boost::shared_ptr<StrikedTypePayoff> innerPayoff(
                                new PlainVanillaPayoff(Option::Put, barrier));
            boost::shared_ptr<Instrument> putn(
                              new EuropeanOption(innerPayoff, innerExercise));
            putn->setPricingEngine(europeanEngine);
            // ...second, we evaluate the current portfolio and the
            // latest put at (B,t)...
            Date killDate = today + (i-1)*Months;
            Settings::instance().evaluationDate() = killDate;
            underlying->setValue(barrier);
            Real portfolioValue = portfolio1.NPV();
            Real putValue = putn->NPV();
            // ...finally, we estimate the notional that kills the
            // portfolio value at that point...
            Real notional = portfolioValue/putValue;
            // ...and we subtract from the portfolio a put with such
            // notional.
            portfolio1.subtract(putn, notional);
        }
        // The portfolio being complete, we return to today's market...
        Settings::instance().evaluationDate() = today;
        underlying->setValue(underlyingValue);
        // ...and output the value.
        Real portfolioValue = portfolio1.NPV();
        Real error = portfolioValue - referenceValue;
        std::cout << std::setw(widths[0]) << std::left
                  << "Replicating portfolio (12 dates)"
                  << std::fixed
                  << std::setw(widths[1]) << std::left << portfolioValue
                  << std::setw(widths[2]) << std::left << error
                  << std::endl;

        // For the second portfolio, we'll use 26 dates at two-weeks'
        // distance.
        for (i=52; i>=2; i-=2) {
            // Same as above.
            Date innerMaturity = today + i*Weeks;
            boost::shared_ptr<Exercise> innerExercise(
                                         new EuropeanExercise(innerMaturity));
            boost::shared_ptr<StrikedTypePayoff> innerPayoff(
                                new PlainVanillaPayoff(Option::Put, barrier));
            boost::shared_ptr<Instrument> putn(
                              new EuropeanOption(innerPayoff, innerExercise));
            putn->setPricingEngine(europeanEngine);
            Date killDate = today + (i-2)*Weeks;
            Settings::instance().evaluationDate() = killDate;
            underlying->setValue(barrier);
            Real portfolioValue = portfolio2.NPV();
            Real putValue = putn->NPV();
            Real notional = portfolioValue/putValue;
            portfolio2.subtract(putn, notional);
        }
        Settings::instance().evaluationDate() = today;
        underlying->setValue(underlyingValue);
        portfolioValue = portfolio2.NPV();
        error = portfolioValue - referenceValue;
        std::cout << std::setw(widths[0]) << std::left
                  << "Replicating portfolio (26 dates)"
                  << std::fixed
                  << std::setw(widths[1]) << std::left << portfolioValue
                  << std::setw(widths[2]) << std::left << error
                  << std::endl;

        // For the third portfolio, we'll use 52 dates at one-week's
        // distance.
        for (i=52; i>=1; i--) {
            // Same as above.
            Date innerMaturity = today + i*Weeks;
            boost::shared_ptr<Exercise> innerExercise(
                                         new EuropeanExercise(innerMaturity));
            boost::shared_ptr<StrikedTypePayoff> innerPayoff(
                                new PlainVanillaPayoff(Option::Put, barrier));
            boost::shared_ptr<Instrument> putn(
                              new EuropeanOption(innerPayoff, innerExercise));
            putn->setPricingEngine(europeanEngine);
            Date killDate = today + (i-1)*Weeks;
            Settings::instance().evaluationDate() = killDate;
            underlying->setValue(barrier);
            Real portfolioValue = portfolio3.NPV();
            Real putValue = putn->NPV();
            Real notional = portfolioValue/putValue;
            portfolio3.subtract(putn, notional);
        }
        Settings::instance().evaluationDate() = today;
        underlying->setValue(underlyingValue);
        portfolioValue = portfolio3.NPV();
        error = portfolioValue - referenceValue;
        std::cout << std::setw(widths[0]) << std::left
                  << "Replicating portfolio (52 dates)"
                  << std::fixed
                  << std::setw(widths[1]) << std::left << portfolioValue
                  << std::setw(widths[2]) << std::left << error
                  << std::endl;

        // Now we modify the market condition to see whether the
        // replication holds. First, we change the underlying value so
        // that the option is out of the money.
        std::cout << dblrule << std::endl;
        std::cout << "Modified market conditions: out of the money"
                  << std::endl;
        std::cout << dblrule << std::endl;
        std::cout << std::setw(widths[0]) << std::left << "Option"
                  << std::setw(widths[1]) << std::left << "NPV"
                  << std::setw(widths[2]) << std::left << "Error"
                  << std::endl;
        std::cout << rule << std::endl;

        underlying->setValue(110.0);

        referenceValue = referenceOption.NPV();
        std::cout << std::setw(widths[0]) << std::left
                  << "Original barrier option"
                  << std::fixed
                  << std::setw(widths[1]) << std::left << referenceValue
                  << std::setw(widths[2]) << std::left << "N/A"
                  << std::endl;
        portfolioValue = portfolio1.NPV();
        error = portfolioValue - referenceValue;
        std::cout << std::setw(widths[0]) << std::left
                  << "Replicating portfolio (12 dates)"
                  << std::fixed
                  << std::setw(widths[1]) << std::left << portfolioValue
                  << std::setw(widths[2]) << std::left << error
                  << std::endl;
        portfolioValue = portfolio2.NPV();
        error = portfolioValue - referenceValue;
        std::cout << std::setw(widths[0]) << std::left
                  << "Replicating portfolio (26 dates)"
                  << std::fixed
                  << std::setw(widths[1]) << std::left << portfolioValue
                  << std::setw(widths[2]) << std::left << error
                  << std::endl;
        portfolioValue = portfolio3.NPV();
        error = portfolioValue - referenceValue;
        std::cout << std::setw(widths[0]) << std::left
                  << "Replicating portfolio (52 dates)"
                  << std::fixed
                  << std::setw(widths[1]) << std::left << portfolioValue
                  << std::setw(widths[2]) << std::left << error
                  << std::endl;

        // Next, we change the underlying value so that the option is
        // in the money.
        std::cout << dblrule << std::endl;
        std::cout << "Modified market conditions: in the money" << std::endl;
        std::cout << dblrule << std::endl;
        std::cout << std::setw(widths[0]) << std::left << "Option"
                  << std::setw(widths[1]) << std::left << "NPV"
                  << std::setw(widths[2]) << std::left << "Error"
                  << std::endl;
        std::cout << rule << std::endl;

        underlying->setValue(90.0);

        referenceValue = referenceOption.NPV();
        std::cout << std::setw(widths[0]) << std::left
                  << "Original barrier option"
                  << std::fixed
                  << std::setw(widths[1]) << std::left << referenceValue
                  << std::setw(widths[2]) << std::left << "N/A"
                  << std::endl;
        portfolioValue = portfolio1.NPV();
        error = portfolioValue - referenceValue;
        std::cout << std::setw(widths[0]) << std::left
                  << "Replicating portfolio (12 dates)"
                  << std::fixed
                  << std::setw(widths[1]) << std::left << portfolioValue
                  << std::setw(widths[2]) << std::left << error
                  << std::endl;
        portfolioValue = portfolio2.NPV();
        error = portfolioValue - referenceValue;
        std::cout << std::setw(widths[0]) << std::left
                  << "Replicating portfolio (26 dates)"
                  << std::fixed
                  << std::setw(widths[1]) << std::left << portfolioValue
                  << std::setw(widths[2]) << std::left << error
                  << std::endl;
        portfolioValue = portfolio3.NPV();
        error = portfolioValue - referenceValue;
        std::cout << std::setw(widths[0]) << std::left
                  << "Replicating portfolio (52 dates)"
                  << std::fixed
                  << std::setw(widths[1]) << std::left << portfolioValue
                  << std::setw(widths[2]) << std::left << error
                  << std::endl;

        // Finally, a word of warning for those (shame on them) who
        // run the example but do not read the code.
        std::cout << dblrule << std::endl;
        std::cout
            << std::endl
            << "The replication seems to be less robust when volatility and \n"
            << "risk-free rate are changed. Feel free to experiment with \n"
            << "the example and contribute a patch if you spot any errors."
            << std::endl;

        Real seconds = timer.elapsed();
        Integer hours = int(seconds/3600);
        seconds -= hours * 3600;
        Integer minutes = int(seconds/60);
        seconds -= minutes * 60;
        std::cout << " \nRun completed in ";
        if (hours > 0)
            std::cout << hours << " h ";
        if (hours > 0 || minutes > 0)
            std::cout << minutes << " m ";
        std::cout << std::fixed << std::setprecision(0)
                  << seconds << " s\n" << std::endl;

        return 0;
    } catch (std::exception& e) {
        std::cout << e.what() << std::endl;
        return 1;
    } catch (...) {
        std::cout << "unknown error" << std::endl;
        return 1;
    }
}