File: steepestdescent.cpp

package info (click to toggle)
quantlib 0.9.0.20071224-1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 22,216 kB
  • ctags: 34,951
  • sloc: cpp: 167,744; ansic: 21,483; sh: 8,947; makefile: 3,327; lisp: 86
file content (87 lines) | stat: -rw-r--r-- 3,510 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2001, 2002, 2003 Nicolas Di Csar

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

#include <ql/math/optimization/steepestdescent.hpp>
#include <ql/math/optimization/problem.hpp>
#include <ql/math/optimization/linesearch.hpp>

namespace QuantLib {

    EndCriteria::Type SteepestDescent::minimize(Problem& P,
                                                const EndCriteria& endCriteria) {
        EndCriteria::Type ecType = EndCriteria::None;
        P.reset();
        Array x_ = P.currentValue();
        Size iterationNumber_=0, stationaryStateIterationNumber_=0;
        lineSearch_->searchDirection() = Array(x_.size());
        bool end;

        // function and squared norm of gradient values;
        Real normdiff;
        // classical initial value for line-search step
        Real t = 1.0;
        // Set gold at the size of the optimization problem search direction
        Array gold(lineSearch_->searchDirection().size());
        Array gdiff(lineSearch_->searchDirection().size());

        P.setFunctionValue(P.valueAndGradient(gold, x_));
        lineSearch_->searchDirection() = -gold;
        P.setGradientNormValue(DotProduct(gold, gold));
        normdiff = std::sqrt(P.gradientNormValue());

        do {
            // Linesearch
            t = (*lineSearch_)(P, ecType, endCriteria, t);
            QL_REQUIRE(lineSearch_->succeed(), "line-search failed!");
            // End criteria
            end = endCriteria(iterationNumber_,
                              stationaryStateIterationNumber_,
                              true,  //FIXME: it should be in the problem
                              P.functionValue(),
                              std::sqrt(P.gradientNormValue()),
                              lineSearch_->lastFunctionValue(),
                              std::sqrt(lineSearch_->lastGradientNorm2()),
                              ecType
                              // FIXME: it's never been used! ???
                              // , normdiff
                              );

            // Updates
            // New point
            x_ = lineSearch_->lastX();
            // New function value
            P.setFunctionValue(lineSearch_->lastFunctionValue());
            // New gradient and search direction vectors
            gdiff = gold - lineSearch_->lastGradient();
            normdiff = std::sqrt(DotProduct (gdiff, gdiff));
            gold = lineSearch_->lastGradient();
            lineSearch_->searchDirection() = -gold;
            // New gradient squared norm
            P.setGradientNormValue(lineSearch_->lastGradientNorm2());

            // Increase interation number
            ++iterationNumber_;
        } while (end == false);

        P.setCurrentValue(x_);
        return ecType;

    }

}