File: hestonprocess.cpp

package info (click to toggle)
quantlib 0.9.0.20071224-1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 22,216 kB
  • ctags: 34,951
  • sloc: cpp: 167,744; ansic: 21,483; sh: 8,947; makefile: 3,327; lisp: 86
file content (203 lines) | stat: -rw-r--r-- 7,894 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2005, 2007 Klaus Spanderen

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

#include <ql/math/distributions/normaldistribution.hpp>
#include <ql/math/distributions/chisquaredistribution.hpp>
#include <ql/quotes/simplequote.hpp>
#include <ql/processes/hestonprocess.hpp>
#include <ql/processes/eulerdiscretization.hpp>

namespace QuantLib {

    HestonProcess::HestonProcess(
                              const Handle<YieldTermStructure>& riskFreeRate,
                              const Handle<YieldTermStructure>& dividendYield,
                              const Handle<Quote>& s0,
                              double v0, double kappa,
                              double theta, double sigma, double rho,
                              Discretization d)
    : StochasticProcess(boost::shared_ptr<discretization>(
                                                    new EulerDiscretization)),
      riskFreeRate_(riskFreeRate), dividendYield_(dividendYield), s0_(s0),
      v0_(v0), kappa_(kappa), theta_(theta), sigma_(sigma), rho_(rho),
      discretization_(d) {

        registerWith(riskFreeRate_);
        registerWith(dividendYield_);
        registerWith(s0_);
    }

    Size HestonProcess::size() const {
        return 2;
    }

    Disposable<Array> HestonProcess::initialValues() const {
        Array tmp(2);
        tmp[0] = s0_->value();
        tmp[1] = v0_;
        return tmp;
    }

    Disposable<Array> HestonProcess::drift(Time t, const Array& x) const {
        Array tmp(2);
        const Real vol = (x[1] > 0.0) ? std::sqrt(x[1])
                         : (discretization_ == Reflection) ? -sqrt(-x[1])
                         : 0.0;

        tmp[0] = riskFreeRate_->forwardRate(t, t, Continuous)
               - dividendYield_->forwardRate(t, t, Continuous)
               - 0.5 * vol * vol;

        tmp[1] = kappa_*
           (theta_-((discretization_==PartialTruncation) ? x[1] : vol*vol));
        return tmp;
    }

    Disposable<Matrix> HestonProcess::diffusion(Time, const Array& x) const {
        /* the correlation matrix is
           |  1   rho |
           | rho   1  |
           whose square root (which is used here) is
           |  1          0       |
           | rho   sqrt(1-rho^2) |
        */
        Matrix tmp(2,2);
        const Real vol = (x[1] > 0.0) ? std::sqrt(x[1])
                         : (discretization_ == Reflection) ? -sqrt(-x[1])
                         : 1e-8; // set vol to (almost) zero but still
                                 // expose some correlation information
        const Real sigma2 = sigma_ * vol;
        const Real sqrhov = std::sqrt(1.0 - rho_*rho_);

        tmp[0][0] = vol;          tmp[0][1] = 0.0;
        tmp[1][0] = rho_*sigma2;  tmp[1][1] = sqrhov*sigma2;
        return tmp;
    }

    Disposable<Array> HestonProcess::apply(const Array& x0,
                                           const Array& dx) const {
        Array tmp(2);
        tmp[0] = x0[0] * std::exp(dx[0]);
        tmp[1] = x0[1] + dx[1];
        return tmp;
    }

    Disposable<Array> HestonProcess::evolve(Time t0, const Array& x0,
                                            Time dt, const Array& dw) const {
        Array retVal(2);
        Real ncp, df, p, dy;
        Real vol, vol2, mu, nu;

        const Real sdt = std::sqrt(dt);
        const Real sqrhov = std::sqrt(1.0 - rho_*rho_);

        switch (discretization_) {
          // For the definition of PartialTruncation, FullTruncation
          // and Reflection  see Lord, R., R. Koekkoek and D. van Dijk (2006),
          // "A Comparison of biased simulation schemes for
          //  stochastic volatility models",
          // Working Paper, Tinbergen Institute
          case PartialTruncation:
            vol = (x0[1] > 0.0) ? std::sqrt(x0[1]) : 0.0;
            vol2 = sigma_ * vol;
            mu =    riskFreeRate_->forwardRate(t0, t0+dt, Continuous)
                  - dividendYield_->forwardRate(t0, t0+dt, Continuous)
                    - 0.5 * vol * vol;
            nu = kappa_*(theta_ - x0[1]);

            retVal[0] = x0[0] * std::exp(mu*dt+vol*dw[0]*sdt);
            retVal[1] = x0[1] + nu*dt + vol2*sdt*(rho_*dw[0] + sqrhov*dw[1]);
            break;
          case FullTruncation:
            vol = (x0[1] > 0.0) ? std::sqrt(x0[1]) : 0.0;
            vol2 = sigma_ * vol;
            mu =    riskFreeRate_->forwardRate(t0, t0+dt, Continuous)
                  - dividendYield_->forwardRate(t0, t0+dt, Continuous)
                    - 0.5 * vol * vol;
            nu = kappa_*(theta_ - vol*vol);

            retVal[0] = x0[0] * std::exp(mu*dt+vol*dw[0]*sdt);
            retVal[1] = x0[1] + nu*dt + vol2*sdt*(rho_*dw[0] + sqrhov*dw[1]);
            break;
          case Reflection:
            vol = std::sqrt(std::fabs(x0[1]));
            vol2 = sigma_ * vol;
            mu =    riskFreeRate_->forwardRate(t0, t0+dt, Continuous)
                  - dividendYield_->forwardRate(t0, t0+dt, Continuous)
                    - 0.5 * vol*vol;
            nu = kappa_*(theta_ - vol*vol);

            retVal[0] = x0[0]*std::exp(mu*dt+vol*dw[0]*sdt);
            retVal[1] = vol*vol
                        +nu*dt + vol2*sdt*(rho_*dw[0] + sqrhov*dw[1]);
            break;
          case ExactVariance:
            // use Alan Lewis trick to decorrelate the equity and the variance
            // process by using y(t)=x(t)-\frac{rho}{sigma}\nu(t)
            // and Ito's Lemma. Then use exact sampling for the variance
            // process. For further details please read the wilmott thread
            // "QuantLib code is very high quality"
            vol = (x0[1] > 0.0) ? std::sqrt(x0[1]) : 0.0;
            mu =   riskFreeRate_->forwardRate(t0, t0+dt, Continuous)
                 - dividendYield_->forwardRate(t0, t0+dt, Continuous)
                   - 0.5 * vol*vol;

            df  = 4*theta_*kappa_/(sigma_*sigma_);
            ncp = 4*kappa_*std::exp(-kappa_*dt)
                /(sigma_*sigma_*(1-std::exp(-kappa_*dt)))*x0[1];

            p = CumulativeNormalDistribution()(dw[1]);
            if (p<0.0)
                p = 0.0;
            else if (p >= 1.0)
                p = 1.0-QL_EPSILON;

            retVal[1] = sigma_*sigma_*(1-std::exp(-kappa_*dt))/(4*kappa_)
                *InverseNonCentralChiSquareDistribution(df, ncp, 100)(p);

            dy = (mu - rho_/sigma_*kappa_
                          *(theta_-vol*vol)) * dt + vol*sqrhov*dw[0]*sdt;

            retVal[0] = x0[0]*std::exp(dy + rho_/sigma_*(retVal[1]-x0[1]));
            break;
          default:
            QL_FAIL("unknown discretization schema");
        }

        return retVal;
    }

    const Handle<Quote>& HestonProcess::s0() const {
        return s0_;
    }

    const Handle<YieldTermStructure>& HestonProcess::dividendYield() const {
        return dividendYield_;
    }

    const Handle<YieldTermStructure>& HestonProcess::riskFreeRate() const {
        return riskFreeRate_;
    }

    Time HestonProcess::time(const Date& d) const {
        return riskFreeRate_->dayCounter().yearFraction(
                                           riskFreeRate_->referenceDate(), d);
    }

}