File: integrals.cpp

package info (click to toggle)
quantlib 0.9.0.20071224-1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 22,216 kB
  • ctags: 34,951
  • sloc: cpp: 167,744; ansic: 21,483; sh: 8,947; makefile: 3,327; lisp: 86
file content (133 lines) | stat: -rw-r--r-- 4,923 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2003 RiskMap srl

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

#include "integrals.hpp"
#include "utilities.hpp"
#include <ql/math/integrals/segmentintegral.hpp>
#include <ql/math/integrals/simpsonintegral.hpp>
#include <ql/math/integrals/trapezoidintegral.hpp>
#include <ql/math/integrals/kronrodintegral.hpp>
#include <ql/math/distributions/normaldistribution.hpp>
#include <ql/math/functional.hpp>
#include <ql/termstructures/volatility/abcd.hpp>

using namespace QuantLib;
using namespace boost::unit_test_framework;

QL_BEGIN_TEST_LOCALS(IntegralTest)

Real tolerance = 1.0e-6;
bool verbose = true;

template <class T>
void testSingle(const T& I, const std::string& tag,
                const boost::function<Real (Real)>& f,
                Real xMin, Real xMax, Real expected) {
    Real calculated = I(f,xMin,xMax);
    if (std::fabs(calculated-expected) > tolerance) {
        BOOST_FAIL(std::setprecision(10)
                   << "integrating " << tag
                   << "    calculated: " << calculated
                   << "    expected:   " << expected);
    }
    // this will be uncommented later...
    /*else {
        if (verbose)
            BOOST_MESSAGE("integrating " << tag
                            << "    calculated: " << calculated
                            << "    expected: " << expected
                            << "    nb of evaluations: " << I.numberOfEvaluations()
                            << "    precision: " << std::setprecision(3)
                            << std::fabs(calculated- expected));
    }*/


}

template <class T>
void testSeveral(const T& I) {
    testSingle(I, "f(x) = 1",
               constant<Real,Real>(1.0), 0.0, 1.0, 1.0);
    testSingle(I, "f(x) = x",
               identity<Real>(),           0.0, 1.0, 0.5);
    testSingle(I, "f(x) = x^2",
               square<Real>(),             0.0, 1.0, 1.0/3.0);
    testSingle(I, "f(x) = sin(x)",
               std::ptr_fun<Real,Real>(std::sin), 0.0, M_PI, 2.0);
    testSingle(I, "f(x) = cos(x)",
               std::ptr_fun<Real,Real>(std::cos), 0.0, M_PI, 0.0);
    testSingle(I, "f(x) = Gaussian(x)",
               NormalDistribution(), -10.0, 10.0, 1.0);
    testSingle(I, "f(x) = Abcd2(x)",
               AbcdSquared(0.07, 0.07, 0.5, 0.1, 8.0, 10.0), 5.0, 6.0,
               AbcdFunction(0.07, 0.07, 0.5, 0.1).covariance(5.0, 6.0, 8.0, 10.0));

}

QL_END_TEST_LOCALS(IntegralTest)


void IntegralTest::testSegment() {
    BOOST_MESSAGE("Testing segment integration...");
    testSeveral(SegmentIntegral(10000));
}

void IntegralTest::testTrapezoid() {
    BOOST_MESSAGE("Testing trapezoid integration...");
    testSeveral(TrapezoidIntegral<Default>(tolerance, 10000));
}

void IntegralTest::testMidPointTrapezoid() {
    BOOST_MESSAGE("Testing mid-point trapezoid integration...");
    testSeveral(TrapezoidIntegral<MidPoint>(tolerance, 10000));
}

void IntegralTest::testSimpson() {
    BOOST_MESSAGE("Testing Simpson integration...");
    testSeveral(SimpsonIntegral(tolerance, 10000));
}

void IntegralTest::testGaussKronrodAdaptive() {
    BOOST_MESSAGE("Testing adaptive Gauss-Kronrod integration...");
    Size maxEvaluations = 1000;
    testSeveral(GaussKronrodAdaptive(tolerance, maxEvaluations));
}

void IntegralTest::testGaussKronrodNonAdaptive() {
    BOOST_MESSAGE("Testing non-adaptive Gauss-Kronrod integration...");
    Real precision = tolerance;
    Size maxEvaluations = 100;
    Real relativeAccuracy = tolerance;
    GaussKronrodNonAdaptive gaussKronrodNonAdaptive(precision, maxEvaluations,
                                                    relativeAccuracy);
    testSeveral(gaussKronrodNonAdaptive);
}


test_suite* IntegralTest::suite() {
    test_suite* suite = BOOST_TEST_SUITE("Integration tests");
    suite->add(BOOST_TEST_CASE(&IntegralTest::testSegment));
    suite->add(BOOST_TEST_CASE(&IntegralTest::testTrapezoid));
    suite->add(BOOST_TEST_CASE(&IntegralTest::testMidPointTrapezoid));
    suite->add(BOOST_TEST_CASE(&IntegralTest::testSimpson));
    suite->add(BOOST_TEST_CASE(&IntegralTest::testGaussKronrodAdaptive));
    suite->add(BOOST_TEST_CASE(&IntegralTest::testGaussKronrodNonAdaptive));
    return suite;
}