1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2003 RiskMap srl
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include "integrals.hpp"
#include "utilities.hpp"
#include <ql/math/integrals/segmentintegral.hpp>
#include <ql/math/integrals/simpsonintegral.hpp>
#include <ql/math/integrals/trapezoidintegral.hpp>
#include <ql/math/integrals/kronrodintegral.hpp>
#include <ql/math/distributions/normaldistribution.hpp>
#include <ql/math/functional.hpp>
#include <ql/termstructures/volatility/abcd.hpp>
using namespace QuantLib;
using namespace boost::unit_test_framework;
QL_BEGIN_TEST_LOCALS(IntegralTest)
Real tolerance = 1.0e-6;
bool verbose = true;
template <class T>
void testSingle(const T& I, const std::string& tag,
const boost::function<Real (Real)>& f,
Real xMin, Real xMax, Real expected) {
Real calculated = I(f,xMin,xMax);
if (std::fabs(calculated-expected) > tolerance) {
BOOST_FAIL(std::setprecision(10)
<< "integrating " << tag
<< " calculated: " << calculated
<< " expected: " << expected);
}
// this will be uncommented later...
/*else {
if (verbose)
BOOST_MESSAGE("integrating " << tag
<< " calculated: " << calculated
<< " expected: " << expected
<< " nb of evaluations: " << I.numberOfEvaluations()
<< " precision: " << std::setprecision(3)
<< std::fabs(calculated- expected));
}*/
}
template <class T>
void testSeveral(const T& I) {
testSingle(I, "f(x) = 1",
constant<Real,Real>(1.0), 0.0, 1.0, 1.0);
testSingle(I, "f(x) = x",
identity<Real>(), 0.0, 1.0, 0.5);
testSingle(I, "f(x) = x^2",
square<Real>(), 0.0, 1.0, 1.0/3.0);
testSingle(I, "f(x) = sin(x)",
std::ptr_fun<Real,Real>(std::sin), 0.0, M_PI, 2.0);
testSingle(I, "f(x) = cos(x)",
std::ptr_fun<Real,Real>(std::cos), 0.0, M_PI, 0.0);
testSingle(I, "f(x) = Gaussian(x)",
NormalDistribution(), -10.0, 10.0, 1.0);
testSingle(I, "f(x) = Abcd2(x)",
AbcdSquared(0.07, 0.07, 0.5, 0.1, 8.0, 10.0), 5.0, 6.0,
AbcdFunction(0.07, 0.07, 0.5, 0.1).covariance(5.0, 6.0, 8.0, 10.0));
}
QL_END_TEST_LOCALS(IntegralTest)
void IntegralTest::testSegment() {
BOOST_MESSAGE("Testing segment integration...");
testSeveral(SegmentIntegral(10000));
}
void IntegralTest::testTrapezoid() {
BOOST_MESSAGE("Testing trapezoid integration...");
testSeveral(TrapezoidIntegral<Default>(tolerance, 10000));
}
void IntegralTest::testMidPointTrapezoid() {
BOOST_MESSAGE("Testing mid-point trapezoid integration...");
testSeveral(TrapezoidIntegral<MidPoint>(tolerance, 10000));
}
void IntegralTest::testSimpson() {
BOOST_MESSAGE("Testing Simpson integration...");
testSeveral(SimpsonIntegral(tolerance, 10000));
}
void IntegralTest::testGaussKronrodAdaptive() {
BOOST_MESSAGE("Testing adaptive Gauss-Kronrod integration...");
Size maxEvaluations = 1000;
testSeveral(GaussKronrodAdaptive(tolerance, maxEvaluations));
}
void IntegralTest::testGaussKronrodNonAdaptive() {
BOOST_MESSAGE("Testing non-adaptive Gauss-Kronrod integration...");
Real precision = tolerance;
Size maxEvaluations = 100;
Real relativeAccuracy = tolerance;
GaussKronrodNonAdaptive gaussKronrodNonAdaptive(precision, maxEvaluations,
relativeAccuracy);
testSeveral(gaussKronrodNonAdaptive);
}
test_suite* IntegralTest::suite() {
test_suite* suite = BOOST_TEST_SUITE("Integration tests");
suite->add(BOOST_TEST_CASE(&IntegralTest::testSegment));
suite->add(BOOST_TEST_CASE(&IntegralTest::testTrapezoid));
suite->add(BOOST_TEST_CASE(&IntegralTest::testMidPointTrapezoid));
suite->add(BOOST_TEST_CASE(&IntegralTest::testSimpson));
suite->add(BOOST_TEST_CASE(&IntegralTest::testGaussKronrodAdaptive));
suite->add(BOOST_TEST_CASE(&IntegralTest::testGaussKronrodNonAdaptive));
return suite;
}
|