1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2003 Ferdinando Ametrano
Copyright (C) 2007 Klaus Spanderen
Copyright (C) 2007 Neil Firth
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include "matrices.hpp"
#include "utilities.hpp"
#include <ql/math/matrix.hpp>
#include <ql/math/matrixutilities/pseudosqrt.hpp>
#include <ql/math/matrixutilities/svd.hpp>
#include <ql/math/matrixutilities/symmetricschurdecomposition.hpp>
using namespace QuantLib;
using namespace boost::unit_test_framework;
QL_BEGIN_TEST_LOCALS(MatricesTest)
Size N;
Matrix M1, M2, M3, M4, M5, M6, I;
Real norm(const Array& v) {
return std::sqrt(DotProduct(v,v));
}
Real norm(const Matrix& m) {
Real sum = 0.0;
for (Size i=0; i<m.rows(); i++)
for (Size j=0; j<m.columns(); j++)
sum += m[i][j]*m[i][j];
return std::sqrt(sum);
}
void setup() {
N = 3;
M1 = M2 = I = Matrix(N,N);
M3 = Matrix(3,4);
M4 = Matrix(4,3);
M5 = Matrix(4, 4, 0.0);
M6 = Matrix(4, 4, 0.0);
M1[0][0] = 1.0; M1[0][1] = 0.9; M1[0][2] = 0.7;
M1[1][0] = 0.9; M1[1][1] = 1.0; M1[1][2] = 0.4;
M1[2][0] = 0.7; M1[2][1] = 0.4; M1[2][2] = 1.0;
M2[0][0] = 1.0; M2[0][1] = 0.9; M2[0][2] = 0.7;
M2[1][0] = 0.9; M2[1][1] = 1.0; M2[1][2] = 0.3;
M2[2][0] = 0.7; M2[2][1] = 0.3; M2[2][2] = 1.0;
I[0][0] = 1.0; I[0][1] = 0.0; I[0][2] = 0.0;
I[1][0] = 0.0; I[1][1] = 1.0; I[1][2] = 0.0;
I[2][0] = 0.0; I[2][1] = 0.0; I[2][2] = 1.0;
M3[0][0] = 1; M3[0][1] = 2; M3[0][2] = 3; M3[0][3] = 4;
M3[1][0] = 2; M3[1][1] = 0; M3[1][2] = 2; M3[1][3] = 1;
M3[2][0] = 0; M3[2][1] = 1; M3[2][2] = 0; M3[2][3] = 0;
M4[0][0] = 1; M4[0][1] = 2; M4[0][2] = 400;
M4[1][0] = 2; M4[1][1] = 0; M4[1][2] = 1;
M4[2][0] = 30; M4[2][1] = 2; M4[2][2] = 0;
M4[3][0] = 2; M4[3][1] = 0; M4[3][2] = 1.05;
// from Higham - nearest correlation matrix
M5[0][0] = 2; M5[0][1] = -1; M5[0][2] = 0.0; M5[0][3] = 0.0;
M5[1][0] = M5[0][1]; M5[1][1] = 2; M5[1][2] = -1; M5[1][3] = 0.0;
M5[2][0] = M5[0][2]; M5[2][1] = M5[1][2]; M5[2][2] = 2; M5[2][3] = -1;
M5[3][0] = M5[0][3]; M5[3][1] = M5[1][3]; M5[3][2] = M5[2][3]; M5[3][3] = 2;
// from Higham - nearest correlation matrix to M5
M6[0][0] = 1; M6[0][1] = -0.8084124981; M6[0][2] = 0.1915875019; M6[0][3] = 0.106775049;
M6[1][0] = M6[0][1]; M6[1][1] = 1; M6[1][2] = -0.6562326948; M6[1][3] = M6[0][2];
M6[2][0] = M6[0][2]; M6[2][1] = M6[1][2]; M6[2][2] = 1; M6[2][3] = M6[0][1];
M6[3][0] = M6[0][3]; M6[3][1] = M6[1][3]; M6[3][2] = M6[2][3]; M6[3][3] = 1;
}
QL_END_TEST_LOCALS(MatricesTest)
void MatricesTest::testEigenvectors() {
BOOST_MESSAGE("Testing eigenvalues and eigenvectors calculation...");
setup();
Matrix testMatrices[] = { M1, M2 };
for (Size k=0; k<LENGTH(testMatrices); k++) {
Matrix& M = testMatrices[k];
SymmetricSchurDecomposition dec(M);
Array eigenValues = dec.eigenvalues();
Matrix eigenVectors = dec.eigenvectors();
Real minHolder = QL_MAX_REAL;
for (Size i=0; i<N; i++) {
Array v(N);
for (Size j=0; j<N; j++)
v[j] = eigenVectors[j][i];
// check definition
Array a = M*v;
Array b = eigenValues[i]*v;
if (norm(a-b) > 1.0e-15)
BOOST_FAIL("Eigenvector definition not satisfied");
// check decreasing ordering
if (eigenValues[i] >= minHolder) {
BOOST_FAIL("Eigenvalues not ordered: " << eigenValues);
} else
minHolder = eigenValues[i];
}
// check normalization
Matrix m = eigenVectors * transpose(eigenVectors);
if (norm(m-I) > 1.0e-15)
BOOST_FAIL("Eigenvector not normalized");
}
}
void MatricesTest::testSqrt() {
BOOST_MESSAGE("Testing matricial square root...");
setup();
Matrix m = pseudoSqrt(M1, SalvagingAlgorithm::None);
Matrix temp = m*transpose(m);
Real error = norm(temp - M1);
Real tolerance = 1.0e-12;
if (error>tolerance) {
BOOST_FAIL("Matrix square root calculation failed\n"
<< "original matrix:\n" << M1
<< "pseudoSqrt:\n" << m
<< "pseudoSqrt*pseudoSqrt:\n" << temp
<< "\nerror: " << error
<< "\ntolerance: " << tolerance);
}
}
void MatricesTest::testHighamSqrt() {
BOOST_MESSAGE("Testing Higham matricial square root...");
setup();
Matrix tempSqrt = pseudoSqrt(M5, SalvagingAlgorithm::Higham);
Matrix ansSqrt = pseudoSqrt(M6, SalvagingAlgorithm::None);
Real error = norm(ansSqrt - tempSqrt);
Real tolerance = 1.0e-4;
if (error>tolerance) {
BOOST_FAIL("Higham matrix correction failed\n"
<< "original matrix:\n" << M5
<< "pseudoSqrt:\n" << tempSqrt
<< "should be:\n" << ansSqrt
<< "\nerror: " << error
<< "\ntolerance: " << tolerance);
}
}
void MatricesTest::testSVD() {
BOOST_MESSAGE("Testing singular value decomposition...");
setup();
Real tol = 1.0e-12;
Matrix testMatrices[] = { M1, M2, M3, M4 };
for (Size j = 0; j < LENGTH(testMatrices); j++) {
// m >= n required (rows >= columns)
Matrix& A = testMatrices[j];
SVD svd(A);
// U is m x n
Matrix U = svd.U();
// s is n long
Array s = svd.singularValues();
// S is n x n
Matrix S = svd.S();
// V is n x n
Matrix V = svd.V();
for (Size i=0; i < S.rows(); i++) {
if (S[i][i] != s[i])
BOOST_FAIL("S not consistent with s");
}
// tests
Matrix U_Utranspose = transpose(U)*U;
if (norm(U_Utranspose-I) > tol)
BOOST_FAIL("U not orthogonal (norm of U^T*U-I = "
<< norm(U_Utranspose-I) << ")");
Matrix V_Vtranspose = transpose(V)*V;
if (norm(V_Vtranspose-I) > tol)
BOOST_FAIL("V not orthogonal (norm of V^T*V-I = "
<< norm(V_Vtranspose-I) << ")");
Matrix A_reconstructed = U * S * transpose(V);
if (norm(A_reconstructed-A) > tol)
BOOST_FAIL("Product does not recover A: (norm of U*S*V^T-A = "
<< norm(A_reconstructed-A) << ")");
}
}
void MatricesTest::testInverse() {
BOOST_MESSAGE("Testing inverse calculation...");
setup();
Real tol = 1.0e-12;
Matrix testMatrices[] = { M1, M2, I };
for (Size j = 0; j < LENGTH(testMatrices); j++) {
Matrix& A = testMatrices[j];
Matrix invA = inverse(A);
Matrix I1 = invA*A;
Matrix I2 = A*invA;
if (norm(I1 - I) > tol)
BOOST_FAIL("inverse(A)*A does not recover unit matrix (norm = "
<< norm(I1-I) << ")");
if (norm(I2 - I) > tol)
BOOST_FAIL("A*inverse(A) does not recover unit matrix (norm = "
<< norm(I1-I) << ")");
}
}
test_suite* MatricesTest::suite() {
test_suite* suite = BOOST_TEST_SUITE("Matrix tests");
suite->add(BOOST_TEST_CASE(&MatricesTest::testEigenvectors));
suite->add(BOOST_TEST_CASE(&MatricesTest::testSqrt));
suite->add(BOOST_TEST_CASE(&MatricesTest::testSVD));
suite->add(BOOST_TEST_CASE(&MatricesTest::testInverse));
suite->add(BOOST_TEST_CASE(&MatricesTest::testHighamSqrt));
return suite;
}
|