1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2007 Marco Bianchetti
Copyright (C) 2007 François du Vignaud
Copyright (C) 2007 Giorgio Facchinetti
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include "optimizers.hpp"
#include "utilities.hpp"
#include <ql/math/optimization/simplex.hpp>
#include <ql/math/optimization/levenbergmarquardt.hpp>
#include <ql/math/optimization/conjugategradient.hpp>
#include <ql/math/optimization/steepestdescent.hpp>
#include <ql/math/optimization/constraint.hpp>
using namespace QuantLib;
using namespace boost::unit_test_framework;
//#define VERBOSE // Uncomment this line to have a more detailed display
QL_BEGIN_TEST_LOCALS(OptimizersTest)
struct NamedOptimizationMethod;
std::vector<boost::shared_ptr<CostFunction> > costFunctions_;
std::vector<boost::shared_ptr<Constraint> > constraints_;
std::vector<Array> initialValues_;
std::vector<Size> maxIterations_, maxStationaryStateIterations_;
std::vector<Real> rootEpsilons_, functionEpsilons_, gradientNormEpsilons_;
std::vector<boost::shared_ptr<EndCriteria> > endCriterias_;
std::vector<std::vector<NamedOptimizationMethod> > optimizationMethods_;
std::vector<Array> xMinExpected_, yMinExpected_;
class OneDimensionalPolynomialDegreeN : public CostFunction {
public:
OneDimensionalPolynomialDegreeN(const Array& coefficients)
: coefficients_(coefficients),
polynomialDegree_(coefficients.size()-1),odd(true) {}
Real value(const Array& x) const {
QL_REQUIRE(x.size()==1,"independent variable must be 1 dimensional");
Real y = 0;
for (Size i=0; i<=polynomialDegree_; ++i)
y += coefficients_[i]*std::pow(x[0],static_cast<int>(i));
return y;
}
Disposable<Array> values(const Array& x) const{
QL_REQUIRE(x.size()==1,"independent variable must be 1 dimensional");
Array y(1);
y[0] = value(x);
return y;
}
private:
const Array coefficients_;
const Size polynomialDegree_;
mutable bool odd;
};
// The goal of this cost function is simply to call another optimization inside
// in order to test nested optimizations
class OptimizationBasedCostFunction : public CostFunction {
public:
Real value(const Array& x) const { return 1.0; }
Disposable<Array> values(const Array& x) const{
// dummy nested optimization
Array coefficients(3, 1.0);
OneDimensionalPolynomialDegreeN oneDimensionalPolynomialDegreeN(coefficients);
NoConstraint constraint;
Array initialValues(1, 100.0);
Problem problem(oneDimensionalPolynomialDegreeN, constraint,
initialValues);
LevenbergMarquardt optimizationMethod;
//Simplex optimizationMethod(0.1);
//ConjugateGradient optimizationMethod;
//SteepestDescent optimizationMethod;
EndCriteria endCriteria(1000, 100, 1e-5, 1e-5, 1e-5);
optimizationMethod.minimize(problem, endCriteria);
// return dummy result
Array dummy(1,0);
return dummy;
}
};
enum OptimizationMethodType {simplex,
levenbergMarquardt,
conjugateGradient,
steepestDescent};
std::string optimizationMethodTypeToString(OptimizationMethodType type) {
switch (type) {
case simplex:
return "Simplex";
case levenbergMarquardt:
return "Levenberg Marquardt";
case conjugateGradient:
return "Conjugate Gradient";
case steepestDescent:
return "Steepest Descent";
default:
QL_FAIL("unknown OptimizationMethod type");
}
}
struct NamedOptimizationMethod {
boost::shared_ptr<OptimizationMethod> optimizationMethod;
std::string name;
};
boost::shared_ptr<OptimizationMethod> makeOptimizationMethod(
OptimizationMethodType optimizationMethodType,
Real simplexLambda,
Real levenbergMarquardtEpsfcn,
Real levenbergMarquardtXtol,
Real levenbergMarquardtGtol)
{
switch (optimizationMethodType) {
case simplex:
return boost::shared_ptr<OptimizationMethod>(
new Simplex(simplexLambda));
case levenbergMarquardt:
return boost::shared_ptr<OptimizationMethod>(
new LevenbergMarquardt(levenbergMarquardtEpsfcn,
levenbergMarquardtXtol,
levenbergMarquardtGtol));
case conjugateGradient:
return boost::shared_ptr<OptimizationMethod>(
new ConjugateGradient());
case steepestDescent:
return boost::shared_ptr<OptimizationMethod>(
new SteepestDescent());
default:
QL_FAIL("unknown OptimizationMethod type");
}
}
std::vector<NamedOptimizationMethod> makeOptimizationMethods(
OptimizationMethodType optimizationMethodTypes[], Size optimizationMethodNb,
Real simplexLambda,
Real levenbergMarquardtEpsfcn,
Real levenbergMarquardtXtol,
Real levenbergMarquardtGtol)
{
std::vector<NamedOptimizationMethod> results;
for (Size i=0; i<optimizationMethodNb; ++i) {
NamedOptimizationMethod namedOptimizationMethod;
namedOptimizationMethod.optimizationMethod = makeOptimizationMethod(
optimizationMethodTypes[i],
simplexLambda,
levenbergMarquardtEpsfcn,
levenbergMarquardtXtol,
levenbergMarquardtGtol);
namedOptimizationMethod.name
= optimizationMethodTypeToString(optimizationMethodTypes[i]);
results.push_back(namedOptimizationMethod);
}
return results;
}
// Set up, for each cost function, all the ingredients for optimization:
// constraint, initial guess, end criteria, optimization methods.
void setup() {
// Cost function n. 1: 1D polynomial of degree 2 (parabolic function y=a*x^2+b*x+c)
const Real a = 1; // required a > 0
const Real b = 1;
const Real c = 1;
Array coefficients(3);
coefficients[0]= c;
coefficients[1]= b;
coefficients[2]= a;
costFunctions_.push_back(boost::shared_ptr<CostFunction>(
new OneDimensionalPolynomialDegreeN(coefficients)));
// Set constraint for optimizers: unconstrained problem
constraints_.push_back(boost::shared_ptr<Constraint>(new NoConstraint()));
// Set initial guess for optimizer
Array initialValue(1);
initialValue[0] = -100;
initialValues_.push_back(initialValue);
// Set end criteria for optimizer
maxIterations_.push_back(10000); // maxIterations
maxStationaryStateIterations_.push_back(100); // MaxStationaryStateIterations
rootEpsilons_.push_back(1e-8); // rootEpsilon
functionEpsilons_.push_back(1e-8); // functionEpsilon
gradientNormEpsilons_.push_back(1e-8); // gradientNormEpsilon
endCriterias_.push_back(boost::shared_ptr<EndCriteria>(
new EndCriteria(maxIterations_.back(), maxStationaryStateIterations_.back(),
rootEpsilons_.back(), functionEpsilons_.back(),
gradientNormEpsilons_.back())));
// Set optimization methods for optimizer
OptimizationMethodType optimizationMethodTypes[] = {
simplex, levenbergMarquardt, conjugateGradient/*, steepestDescent*/};
Real simplexLambda = 0.1; // characteristic search length for simplex
Real levenbergMarquardtEpsfcn = 1.0e-8; // parameters specific for Levenberg-Marquardt
Real levenbergMarquardtXtol = 1.0e-8; //
Real levenbergMarquardtGtol = 1.0e-8; //
optimizationMethods_.push_back(makeOptimizationMethods(
optimizationMethodTypes, LENGTH(optimizationMethodTypes),
simplexLambda, levenbergMarquardtEpsfcn, levenbergMarquardtXtol,
levenbergMarquardtGtol));
// Set expected results for optimizer
Array xMinExpected(1),yMinExpected(1);
xMinExpected[0] = -b/(2.0*a);
yMinExpected[0] = -(b*b-4.0*a*c)/(4.0*a);
xMinExpected_.push_back(xMinExpected);
yMinExpected_.push_back(yMinExpected);
}
QL_END_TEST_LOCALS(OptimizersTest)
void OptimizersTest::test() {
BOOST_MESSAGE("Testing optimizers...");
setup();
// Loop over problems (currently there is only 1 problem)
for (Size i=0; i<costFunctions_.size(); ++i) {
#ifdef VERBOSE
BOOST_MESSAGE("costFunction # = " << i << "\n");
#endif
Problem problem(*costFunctions_[i], *constraints_[i],
initialValues_[i]);
Array initialValues = problem.currentValue();
// Loop over optimizers
for (Size j=0; j<(optimizationMethods_[i]).size(); ++j) {
#ifdef VERBOSE
BOOST_MESSAGE(" Optimizer: " << optimizationMethods_[i][j].name);
#endif
Real rootEpsilon = endCriterias_[i]->rootEpsilon();
Size endCriteriaTests = 1;
// Loop over rootEpsilon
for(Size k=0; k<endCriteriaTests; ++k) {
problem.setCurrentValue(initialValues);
EndCriteria endCriteria(
endCriterias_[i]->maxIterations(),
endCriterias_[i]->maxStationaryStateIterations(),
rootEpsilon,
endCriterias_[i]->functionEpsilon(),
endCriterias_[i]->gradientNormEpsilon());
rootEpsilon *= .1;
EndCriteria::Type endCriteriaResult =
optimizationMethods_[i][j].optimizationMethod->minimize(
problem, endCriteria);
Array xMinCalculated = problem.currentValue();
Array yMinCalculated = problem.values(xMinCalculated);
// Check optimization results vs known solution
#ifndef VERBOSE
if (endCriteriaResult==EndCriteria::None ||
endCriteriaResult==EndCriteria::MaxIterations ||
endCriteriaResult==EndCriteria::Unknown)
#endif
BOOST_MESSAGE("\n function evaluations: " << problem.functionEvaluation() <<
"\n gradient evaluations: " << problem.gradientEvaluation() <<
"\n x expected: " << xMinExpected_[i] <<
"\n x calculated: " << std::setprecision(9) << xMinCalculated <<
"\n x difference: " << xMinExpected_[i]- xMinCalculated <<
"\n rootEpsilon: " << std::setprecision(9) << endCriteria.rootEpsilon() <<
"\n y expected: " << yMinExpected_[i] <<
"\n y calculated: " << std::setprecision(9) << yMinCalculated <<
"\n y difference: " << yMinExpected_[i]- yMinCalculated <<
"\n functionEpsilon: " << std::setprecision(9) << endCriteria.functionEpsilon() <<
"\n endCriteriaResult: " << endCriteriaResult);
}
}
}
}
void OptimizersTest::nestedOptimizationTest() {
BOOST_MESSAGE("Testing nested optimizations...");
OptimizationBasedCostFunction optimizationBasedCostFunction;
NoConstraint constraint;
Array initialValues(1, 0.0);
Problem problem(optimizationBasedCostFunction, constraint,
initialValues);
LevenbergMarquardt optimizationMethod;
//Simplex optimizationMethod(0.1);
//ConjugateGradient optimizationMethod;
//SteepestDescent optimizationMethod;
EndCriteria endCriteria(1000, 100, 1e-5, 1e-5, 1e-5);
optimizationMethod.minimize(problem, endCriteria);
}
test_suite* OptimizersTest::suite() {
test_suite* suite = BOOST_TEST_SUITE("Optimizers tests");
suite->add(BOOST_TEST_CASE(&OptimizersTest::test));
suite->add(BOOST_TEST_CASE(&OptimizersTest::nestedOptimizationTest));
return suite;
}
|