File: optimizers.cpp

package info (click to toggle)
quantlib 0.9.0.20071224-1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 22,216 kB
  • ctags: 34,951
  • sloc: cpp: 167,744; ansic: 21,483; sh: 8,947; makefile: 3,327; lisp: 86
file content (311 lines) | stat: -rw-r--r-- 12,811 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2007 Marco Bianchetti
 Copyright (C) 2007 François du Vignaud
 Copyright (C) 2007 Giorgio Facchinetti

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

#include "optimizers.hpp"
#include "utilities.hpp"
#include <ql/math/optimization/simplex.hpp>
#include <ql/math/optimization/levenbergmarquardt.hpp>
#include <ql/math/optimization/conjugategradient.hpp>
#include <ql/math/optimization/steepestdescent.hpp>
#include <ql/math/optimization/constraint.hpp>

using namespace QuantLib;
using namespace boost::unit_test_framework;

//#define VERBOSE // Uncomment this line to have a more detailed display


QL_BEGIN_TEST_LOCALS(OptimizersTest)

struct NamedOptimizationMethod;

std::vector<boost::shared_ptr<CostFunction> > costFunctions_;
std::vector<boost::shared_ptr<Constraint> > constraints_;
std::vector<Array> initialValues_;
std::vector<Size> maxIterations_, maxStationaryStateIterations_;
std::vector<Real> rootEpsilons_, functionEpsilons_, gradientNormEpsilons_;
std::vector<boost::shared_ptr<EndCriteria> > endCriterias_;
std::vector<std::vector<NamedOptimizationMethod> > optimizationMethods_;
std::vector<Array> xMinExpected_, yMinExpected_;

class OneDimensionalPolynomialDegreeN : public CostFunction {
  public:
    OneDimensionalPolynomialDegreeN(const Array& coefficients)
    : coefficients_(coefficients),
      polynomialDegree_(coefficients.size()-1),odd(true) {}

    Real value(const Array& x) const {
        QL_REQUIRE(x.size()==1,"independent variable must be 1 dimensional");
        Real y = 0;
        for (Size i=0; i<=polynomialDegree_; ++i)
            y += coefficients_[i]*std::pow(x[0],static_cast<int>(i));
        return y;
    }

    Disposable<Array> values(const Array& x) const{
        QL_REQUIRE(x.size()==1,"independent variable must be 1 dimensional");
        Array y(1);
        y[0] = value(x);
        return y;
    }

  private:
    const Array coefficients_;
    const Size polynomialDegree_;
    mutable bool odd;
};


// The goal of this cost function is simply to call another optimization inside
// in order to test nested optimizations
class OptimizationBasedCostFunction : public CostFunction {
  public:
    Real value(const Array& x) const { return 1.0; }

    Disposable<Array> values(const Array& x) const{
        // dummy nested optimization
        Array coefficients(3, 1.0);
        OneDimensionalPolynomialDegreeN oneDimensionalPolynomialDegreeN(coefficients);
        NoConstraint constraint;
        Array initialValues(1, 100.0);
        Problem problem(oneDimensionalPolynomialDegreeN, constraint,
                        initialValues);
        LevenbergMarquardt optimizationMethod;
        //Simplex optimizationMethod(0.1);
        //ConjugateGradient optimizationMethod;
        //SteepestDescent optimizationMethod;
        EndCriteria endCriteria(1000, 100, 1e-5, 1e-5, 1e-5);
        optimizationMethod.minimize(problem, endCriteria);
        // return dummy result
        Array dummy(1,0);
        return dummy;
    }
};


enum OptimizationMethodType {simplex,
                             levenbergMarquardt,
                             conjugateGradient,
                             steepestDescent};

std::string optimizationMethodTypeToString(OptimizationMethodType type) {
    switch (type) {
      case simplex:
          return "Simplex";
      case levenbergMarquardt:
          return "Levenberg Marquardt";
      case conjugateGradient:
          return "Conjugate Gradient";
      case steepestDescent:
          return "Steepest Descent";
      default:
        QL_FAIL("unknown OptimizationMethod type");
    }
}

struct NamedOptimizationMethod {
    boost::shared_ptr<OptimizationMethod> optimizationMethod;
    std::string name;
};


boost::shared_ptr<OptimizationMethod> makeOptimizationMethod(
    OptimizationMethodType optimizationMethodType,
    Real simplexLambda,
    Real levenbergMarquardtEpsfcn,
    Real levenbergMarquardtXtol,
    Real levenbergMarquardtGtol)
{
    switch (optimizationMethodType) {
        case simplex:
            return boost::shared_ptr<OptimizationMethod>(
                new Simplex(simplexLambda));
        case levenbergMarquardt:
            return boost::shared_ptr<OptimizationMethod>(
                new LevenbergMarquardt(levenbergMarquardtEpsfcn,
                                       levenbergMarquardtXtol,
                                       levenbergMarquardtGtol));
        case conjugateGradient:
            return boost::shared_ptr<OptimizationMethod>(
                new ConjugateGradient());
        case steepestDescent:
            return boost::shared_ptr<OptimizationMethod>(
                new SteepestDescent());
        default:
            QL_FAIL("unknown OptimizationMethod type");
    }
}


std::vector<NamedOptimizationMethod> makeOptimizationMethods(
    OptimizationMethodType optimizationMethodTypes[], Size optimizationMethodNb,
    Real simplexLambda,
    Real levenbergMarquardtEpsfcn,
    Real levenbergMarquardtXtol,
    Real levenbergMarquardtGtol)
{
    std::vector<NamedOptimizationMethod> results;
    for (Size i=0; i<optimizationMethodNb; ++i) {
        NamedOptimizationMethod namedOptimizationMethod;
        namedOptimizationMethod.optimizationMethod = makeOptimizationMethod(
            optimizationMethodTypes[i],
            simplexLambda,
            levenbergMarquardtEpsfcn,
            levenbergMarquardtXtol,
            levenbergMarquardtGtol);
        namedOptimizationMethod.name
            = optimizationMethodTypeToString(optimizationMethodTypes[i]);
        results.push_back(namedOptimizationMethod);
    }
    return results;
}
// Set up, for each cost function, all the ingredients for optimization:
// constraint, initial guess, end criteria, optimization methods.
void setup() {

// Cost function n. 1: 1D polynomial of degree 2 (parabolic function y=a*x^2+b*x+c)
    const Real a = 1;   // required a > 0
    const Real b = 1;
    const Real c = 1;
    Array coefficients(3);
    coefficients[0]= c;
    coefficients[1]= b;
    coefficients[2]= a;
    costFunctions_.push_back(boost::shared_ptr<CostFunction>(
        new OneDimensionalPolynomialDegreeN(coefficients)));
    // Set constraint for optimizers: unconstrained problem
    constraints_.push_back(boost::shared_ptr<Constraint>(new NoConstraint()));
    // Set initial guess for optimizer
    Array initialValue(1);
    initialValue[0] = -100;
    initialValues_.push_back(initialValue);
    // Set end criteria for optimizer
    maxIterations_.push_back(10000);                // maxIterations
    maxStationaryStateIterations_.push_back(100);   // MaxStationaryStateIterations
    rootEpsilons_.push_back(1e-8);                  // rootEpsilon
    functionEpsilons_.push_back(1e-8);              // functionEpsilon
    gradientNormEpsilons_.push_back(1e-8);          // gradientNormEpsilon
    endCriterias_.push_back(boost::shared_ptr<EndCriteria>(
        new EndCriteria(maxIterations_.back(), maxStationaryStateIterations_.back(),
                        rootEpsilons_.back(), functionEpsilons_.back(),
                        gradientNormEpsilons_.back())));
    // Set optimization methods for optimizer
    OptimizationMethodType optimizationMethodTypes[] = {
        simplex, levenbergMarquardt, conjugateGradient/*, steepestDescent*/};
    Real simplexLambda = 0.1;                   // characteristic search length for simplex
    Real levenbergMarquardtEpsfcn = 1.0e-8;     // parameters specific for Levenberg-Marquardt
    Real levenbergMarquardtXtol   = 1.0e-8;     //
    Real levenbergMarquardtGtol   = 1.0e-8;     //
    optimizationMethods_.push_back(makeOptimizationMethods(
        optimizationMethodTypes, LENGTH(optimizationMethodTypes),
        simplexLambda, levenbergMarquardtEpsfcn, levenbergMarquardtXtol,
        levenbergMarquardtGtol));
    // Set expected results for optimizer
    Array xMinExpected(1),yMinExpected(1);
    xMinExpected[0] = -b/(2.0*a);
    yMinExpected[0] = -(b*b-4.0*a*c)/(4.0*a);
    xMinExpected_.push_back(xMinExpected);
    yMinExpected_.push_back(yMinExpected);
}

QL_END_TEST_LOCALS(OptimizersTest)

void OptimizersTest::test() {
    BOOST_MESSAGE("Testing optimizers...");

    setup();

    // Loop over problems (currently there is only 1 problem)
    for (Size i=0; i<costFunctions_.size(); ++i) {
        #ifdef VERBOSE
            BOOST_MESSAGE("costFunction # = " << i << "\n");
        #endif
        Problem problem(*costFunctions_[i], *constraints_[i],
                        initialValues_[i]);
        Array initialValues = problem.currentValue();
        // Loop over optimizers
        for (Size j=0; j<(optimizationMethods_[i]).size(); ++j) {
            #ifdef VERBOSE
                BOOST_MESSAGE("  Optimizer: " << optimizationMethods_[i][j].name);
            #endif
            Real rootEpsilon = endCriterias_[i]->rootEpsilon();
            Size endCriteriaTests = 1;
           // Loop over rootEpsilon
            for(Size k=0; k<endCriteriaTests; ++k) {
                problem.setCurrentValue(initialValues);
                EndCriteria endCriteria(
                            endCriterias_[i]->maxIterations(),
                            endCriterias_[i]->maxStationaryStateIterations(),
                            rootEpsilon,
                            endCriterias_[i]->functionEpsilon(),
                            endCriterias_[i]->gradientNormEpsilon());
                rootEpsilon *= .1;
                EndCriteria::Type endCriteriaResult =
                    optimizationMethods_[i][j].optimizationMethod->minimize(
                    problem, endCriteria);
                Array xMinCalculated = problem.currentValue();
                Array yMinCalculated = problem.values(xMinCalculated);
                // Check optimization results vs known solution
                #ifndef VERBOSE
                    if (endCriteriaResult==EndCriteria::None ||
                        endCriteriaResult==EndCriteria::MaxIterations ||
                        endCriteriaResult==EndCriteria::Unknown)
                #endif
                BOOST_MESSAGE("\n    function evaluations: " << problem.functionEvaluation()  <<
                              "\n    gradient evaluations: " << problem.gradientEvaluation() <<
                              "\n    x expected:           " << xMinExpected_[i] <<
                              "\n    x calculated:         " << std::setprecision(9) << xMinCalculated <<
                              "\n    x difference:         " <<  xMinExpected_[i]- xMinCalculated <<
                              "\n    rootEpsilon:          " << std::setprecision(9) << endCriteria.rootEpsilon() <<
                              "\n    y expected:           " << yMinExpected_[i] <<
                              "\n    y calculated:         " << std::setprecision(9) << yMinCalculated <<
                              "\n    y difference:         " <<  yMinExpected_[i]- yMinCalculated <<
                              "\n    functionEpsilon:      " << std::setprecision(9) << endCriteria.functionEpsilon() <<
                              "\n    endCriteriaResult:    " << endCriteriaResult);
            }
        }
    }
}


void OptimizersTest::nestedOptimizationTest() {
    BOOST_MESSAGE("Testing nested optimizations...");
    OptimizationBasedCostFunction optimizationBasedCostFunction;
    NoConstraint constraint;
    Array initialValues(1, 0.0);
    Problem problem(optimizationBasedCostFunction, constraint,
                    initialValues);
    LevenbergMarquardt optimizationMethod;
    //Simplex optimizationMethod(0.1);
    //ConjugateGradient optimizationMethod;
    //SteepestDescent optimizationMethod;
    EndCriteria endCriteria(1000, 100, 1e-5, 1e-5, 1e-5);
    optimizationMethod.minimize(problem, endCriteria);

}

test_suite* OptimizersTest::suite() {
    test_suite* suite = BOOST_TEST_SUITE("Optimizers tests");
    suite->add(BOOST_TEST_CASE(&OptimizersTest::test));
    suite->add(BOOST_TEST_CASE(&OptimizersTest::nestedOptimizationTest));
    return suite;
}