1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2008 Roland Lichters
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file distribution.cpp
\brief Discretized probability density and cumulative probability
*/
#include <ql/experimental/credit/distribution.hpp>
#include <ql/math/comparison.hpp>
#include <ql/errors.hpp>
namespace QuantLib {
//-------------------------------------------------------------------------
Distribution::Distribution (int nBuckets, Real xmin, Real xmax)
//-------------------------------------------------------------------------
: size_(nBuckets),
xmin_(xmin), xmax_(xmax), count_(nBuckets),
x_(nBuckets,0), dx_(nBuckets,0),
density_(nBuckets,0),
cumulativeDensity_(nBuckets,0),
excessProbability_(nBuckets,0),
cumulativeExcessProbability_(nBuckets,0),
average_(nBuckets,0),
overFlow_(0), underFlow_(0),
isNormalized_(false) {
for (int i = 0; i < nBuckets; i++) {
dx_[i] = (xmax - xmin) / nBuckets;
x_[i] = (i == 0 ? xmin : x_[i-1] + dx_[i-1]);
}
// ensure we match exactly the domain, otherwise we might fail the
// locate test because of precission mismatches
dx_.back() = xmax - x_.back();
}
//-------------------------------------------------------------------------
int Distribution::locate (Real x) {
//-------------------------------------------------------------------------
QL_REQUIRE ((x >= x_.front() || close(x, x_.front())) &&
(x <= x_.back() + dx_.back()
|| close(x, x_.back() + dx_.back())),
"coordinate " << x
<< " out of range [" << x_.front() << "; "
<< x_.back() + dx_.back() << "]");
for (Size i = 0; i < x_.size(); i++) {
if (x_[i] > x)
return i - 1;
}
return x_.size() - 1;
}
//-------------------------------------------------------------------------
Real Distribution::dx (Real x) {
//-------------------------------------------------------------------------
int i = locate (x);
return dx_[i];
}
//-------------------------------------------------------------------------
void Distribution::add (Real value) {
//-------------------------------------------------------------------------
isNormalized_ = false;
if (value < x_.front()) underFlow_++;
else {
for (Size i = 0; i < count_.size(); i++) {
if (x_[i] + dx_[i] > value) {
count_[i]++;
average_[i] += value;
return;
}
}
overFlow_++;
}
}
//-------------------------------------------------------------------------
void Distribution::addDensity (int bucket, Real value) {
//-------------------------------------------------------------------------
QL_REQUIRE (bucket >= 0 && bucket < size_, "bucket out of range");
isNormalized_ = false;
density_[bucket] += value;
}
//-------------------------------------------------------------------------
void Distribution::addAverage (int bucket, Real value) {
//-------------------------------------------------------------------------
QL_REQUIRE (bucket >= 0 && bucket < size_, "bucket out of range");
isNormalized_ = false;
average_[bucket] += value;
}
//-------------------------------------------------------------------------
void Distribution::normalize () {
//-------------------------------------------------------------------------
if (isNormalized_)
return;
int count = underFlow_ + overFlow_;
for (int i = 0; i < size_; i++)
count += count_[i];
excessProbability_[0] = 1.0;
cumulativeExcessProbability_[0] = 0.0;
for (int i = 0; i < size_; i++) {
if (count > 0) {
density_[i] = 1.0 / dx_[i] * count_[i] / count;
if (count_[i] > 0)
average_[i] /= count_[i];
}
if (density_[i] == 0.0)
average_[i] = x_[i] + dx_[i]/2;
cumulativeDensity_[i] = density_[i] * dx_[i];
if (i > 0) {
cumulativeDensity_[i] += cumulativeDensity_[i-1];
excessProbability_[i] = 1.0 - cumulativeDensity_[i-1];
// excessProbability_[i] = excessProbability_[i-1]
// - density_[i-1] * dx_[i-1];
// cumulativeExcessProbability_[i]
// = (excessProbability_[i-1] +
// excessProbability_[i]) / 2 * dx_[i-1]
// + cumulativeExcessProbability_[i-1];
cumulativeExcessProbability_[i]
= excessProbability_[i-1] * dx_[i-1]
+ cumulativeExcessProbability_[i-1];
}
}
isNormalized_ = true;
}
//-------------------------------------------------------------------------
Real Distribution::confidenceLevel (Real quantil) {
//-------------------------------------------------------------------------
normalize();
for (int i = 0; i < size_; i++) {
if (cumulativeDensity_[i] > quantil)
return x_[i] + dx_[i];
}
return x_.back() + dx_.back();
}
//-------------------------------------------------------------------------
Real Distribution::expectedValue () {
//-------------------------------------------------------------------------
normalize();
Real expected = 0;
for (int i = 0; i < size_; i++) {
Real x = x_[i] + dx_[i]/2;
expected += x * dx_[i] * density_[i];
}
return expected;
}
//-------------------------------------------------------------------------
Real Distribution::trancheExpectedValue (Real a, Real d) {
//-------------------------------------------------------------------------
normalize();
Real expected = 0;
for (int i = 0; i < size_; i++) {
Real x = x_[i] + dx_[i]/2;
if (x < a)
continue;
if (x > d)
break;
expected += (x - a) * dx_[i] * density_[i];
}
expected += (d - a) * (1.0 - cumulativeDensity (d));
return expected;
}
// Real Distribution::cumulativeExcessProbability (Real a, Real b) {
// //normalize();
// Real integral = 0.0;
// for (int i = 0; i < size_; i++) {
// if (x_[i] >= b) break;
// if (x_[i] >= a)
// integral += dx_[i] * excessProbability_[i];
// }
// return integral;
// }
//-------------------------------------------------------------------------
Real Distribution::cumulativeExcessProbability (Real a, Real b) {
//-------------------------------------------------------------------------
normalize();
QL_REQUIRE (b <= xmax_,
"end of interval " << b << " out of range ["
<< xmin_ << ", " << xmax_ << "]");
QL_REQUIRE (a >= xmin_,
"start of interval " << a << " out of range ["
<< xmin_ << ", " << xmax_ << "]");
int i = locate (a);
int j = locate (b);
return cumulativeExcessProbability_[j]-cumulativeExcessProbability_[i];
Real integral = 0.0;
for (int i = 0; i < size_; i++) {
if (x_[i] >= b) break;
if (x_[i] >= a)
integral += dx_[i] * excessProbability_[i];
}
return integral;
}
//-------------------------------------------------------------------------
Real Distribution::cumulativeDensity (Real x) {
//-------------------------------------------------------------------------
Real tiny = dx_.back() * 1e-3;
QL_REQUIRE (x > 0, "x must be positive");
normalize();
for (int i = 0; i < size_; i++) {
if (x_[i] + dx_[i] + tiny >= x)
return ((x - x_[i]) * cumulativeDensity_[i]
+ (x_[i] + dx_[i] - x) * cumulativeDensity_[i-1]) / dx_[i];
}
QL_FAIL ("x = " << x << " beyond distribution cutoff "
<< x_.back() + dx_.back());
}
//-------------------------------------------------------------------------
void Distribution::tranche (Real attachmentPoint, Real detachmentPoint) {
//-------------------------------------------------------------------------
QL_REQUIRE (attachmentPoint < detachmentPoint,
"attachment >= detachment point");
QL_REQUIRE (x_.back() > attachmentPoint && x_.back() > detachmentPoint,
"attachment or detachment too large");
// shift
while (x_[1] < attachmentPoint) {
x_.erase(x_.begin());
dx_.erase(dx_.begin());
count_.erase(count_.begin());
density_.erase(density_.begin());
cumulativeDensity_.erase(cumulativeDensity_.begin());
excessProbability_.erase(excessProbability_.begin());
}
// truncate
for (Size i = 0; i < x_.size(); i++) {
x_[i] -= attachmentPoint; // = x_[i-1] + dx_[i-1];
if (x_[i] > detachmentPoint - attachmentPoint)
excessProbability_[i] = 0.0;
}
// force spike at zero
excessProbability_[0] = 1.0;
// update density and cumlated
for (Size i = 0; i < x_.size(); i++) {
density_[i] = (excessProbability_[i] - excessProbability_[i+1])
/ dx_[i];
cumulativeDensity_[i] = density_[i] * dx_[i];
if (i > 0) cumulativeDensity_[i] += cumulativeDensity_[i-1];
}
}
//-------------------------------------------------------------------------
Distribution ManipulateDistribution::convolve (const Distribution& d1,
const Distribution& d2) {
//-------------------------------------------------------------------------
// force equal constant bucket sizes
QL_REQUIRE (d1.dx_[0] == d2.dx_[0], "bucket sizes differ in d1 and d2");
for (Size i = 1; i < d1.size(); i++)
QL_REQUIRE (d1.dx_[i] == d1.dx_[i-1], "bucket size varies in d1");
for (Size i = 1; i < d2.size(); i++)
QL_REQUIRE (d2.dx_[i] == d2.dx_[i-1], "bucket size varies in d2");
// force offset 0
QL_REQUIRE (d1.xmin_ == 0.0 && d1.xmin_ == 0.0,
"distributions offset larger than 0");
Distribution dist(d1.size() + d2.size() - 1,
0.0, // assuming both distributions have xmin = 0
d1.xmax_ + d2.xmax_);
for (Size i1 = 0; i1 < d1.size(); i1++) {
Real dx = d1.dx_[i1];
for (Size i2 = 0; i2 < d2.size(); i2++)
dist.density_[i1+i2] = d1.density_[i1] * d2.density_[i2] * dx;
}
// update cumulated and excess
dist.excessProbability_[0] = 1.0;
for (Size i = 0; i < dist.size(); i++) {
dist.cumulativeDensity_[i] = dist.density_[i] * dist.dx_[i];
if (i > 0) {
dist.cumulativeDensity_[i] += dist.cumulativeDensity_[i-1];
dist.excessProbability_[i] = dist.excessProbability_[i-1]
- dist.density_[i-1] * dist.dx_[i-1];
}
}
return dist;
}
}
|