File: lossdistribution.cpp

package info (click to toggle)
quantlib 1.2-2
  • links: PTS
  • area: main
  • in suites: wheezy
  • size: 30,760 kB
  • sloc: cpp: 232,809; ansic: 21,483; sh: 11,108; makefile: 4,717; lisp: 86
file content (324 lines) | stat: -rw-r--r-- 12,877 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2008 Roland Lichters

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

#include <ql/experimental/credit/lossdistribution.hpp>
#include <ql/math/randomnumbers/mt19937uniformrng.hpp>

using namespace std;

namespace QuantLib {

    //--------------------------------------------------------------------------
    Real LossDist::binomialProbabilityOfNEvents(int n, vector<Real>& p) {
    //--------------------------------------------------------------------------
        BinomialDistribution binomial (p[0], p.size());
        return binomial(n);
    }

    //--------------------------------------------------------------------------
    Real LossDist::binomialProbabilityOfAtLeastNEvents(int n, vector<Real>& p) {
    //--------------------------------------------------------------------------
        CumulativeBinomialDistribution binomial(p[0], p.size());
        return 1.0 - binomial(n-1);
        /*
        Real defp = 0;
        for (Size i = n; i <= p.size(); i++)
            defp += binomialProbabilityOfNEvents (i, p);

        return defp;
        */
    }

    //--------------------------------------------------------------------------
    vector<Real> LossDist::probabilityOfNEvents(vector<Real>& p) {
    //--------------------------------------------------------------------------
        Size n = p.size();
        vector<Real> probability(n+1, 0.0);
        vector<Real> prev;
        probability[0] = 1.0;
        for (Size j = 0; j < n; j++) {
            prev = probability;
            probability[0] = prev[0] * (1.0 - p[j]);
            for (Size i = 1; i <= j; i++)
                probability[i] = prev[i-1] * p[j] + prev[i] * (1.0 - p[j]);
            probability[j+1] = prev[j] * p[j];
        }

        return probability;
    }

    //--------------------------------------------------------------------------
    Real LossDist::probabilityOfNEvents(int k, vector<Real>& p) {
    //--------------------------------------------------------------------------
        return probabilityOfNEvents(p)[k];

        vector<Real> w (p.size(), 0);
        vector<Real> u (k+1, 0);
        vector<Real> v (k+1, 0);

        Real pZero = 1.0;
        for (Size i = 0; i < w.size(); i++) {
            pZero *= (1.0 - p[i]);
            w[i] = p[i] / (1.0 - p[i]);
        }

        if (k == 0) return pZero;

        int kk = k;
        Real prodw = 1.0;

        // Cumulated probability of up to n events:
        // Cut off when the cumulated probability reaches 1,
        // i.e. set all following probabilities of exactly n events to zero.
        Real sum = 1.0;

        u[0] = 1.0;
        for (int i = 1; i <= kk; i++) {
            v[i] = 0;
            for (Size j = 0; j < w.size(); j++)
                v[i] += pow (w[j], i);
            u[i] = 0;
            for (int j = 1; j <= i; j++)
                u[i] +=  pow (-1.0, j+1) * v[j] * u[i-j];
            u[i] /= i;

            // cut off
            if (sum * pZero >= 1.0 || u[i] < 0 || u[i] * pZero >= 1.0)
                u[i] = 0;

            sum += u[i];
        }

        return pZero * prodw * u[kk];
    }

    //--------------------------------------------------------------------------
    Real LossDist::probabilityOfAtLeastNEvents (int k, vector<Real>& p) {
    //--------------------------------------------------------------------------
        vector<Real> probability = probabilityOfNEvents(p);
        Real sum = 1.0;
        for (int j = 0; j < k; j++)
            sum -= probability[j];
        return sum;
        /*
        Real sum = 0;
        for (Size i = k; i <= p.size(); i++)
            sum += probabilityOfNEvents (i, p);
        return sum;
        */
    }

    //--------------------------------------------------------------------------
    Real ProbabilityOfNEvents::operator()(vector<Real> p) const {
    //--------------------------------------------------------------------------
        return LossDist::probabilityOfNEvents (n_, p);
    }

    //--------------------------------------------------------------------------
    Real ProbabilityOfAtLeastNEvents::operator()(vector<Real> p) const {
    //--------------------------------------------------------------------------
        return LossDist::probabilityOfAtLeastNEvents (n_, p);
    }

    //--------------------------------------------------------------------------
    Real BinomialProbabilityOfAtLeastNEvents::operator()(vector<Real> p) {
    //--------------------------------------------------------------------------
        return LossDist::binomialProbabilityOfAtLeastNEvents(n_, p);
    }

    //--------------------------------------------------------------------------
    Distribution LossDistBinomial::operator()(Size n, Real volume,
                                              Real probability) const {
    //--------------------------------------------------------------------------
        n_ = n;
        probability_.clear();
        probability_.resize(n_+1, 0.0);
        Distribution dist (nBuckets_, 0.0, maximum_);
        BinomialDistribution binomial (probability, n);
        for (Size i = 0; i <= n; i++) {
            if (volume_ * i <= maximum_) {
                probability_[i] = binomial(i);
                Size bucket = dist.locate(volume * i);
                dist.addDensity (bucket, probability_[i] / dist.dx(bucket));
                dist.addAverage (bucket, volume * i);
            }
        }

        excessProbability_.clear();
        excessProbability_.resize(n_+1, 0.0);
        excessProbability_[n_] = probability_[n_];
        for (int k = n_-1; k >= 0; k--)
            excessProbability_[k] = excessProbability_[k+1] + probability_[k];

        dist.normalize();

        return dist;
    }

    //--------------------------------------------------------------------------
    Distribution LossDistBinomial::operator()(const vector<Real>& nominals,
                                    const vector<Real>& probabilities) const {
    //--------------------------------------------------------------------------
        return operator()(nominals.size(), nominals[0], probabilities[0]);
    }

    //--------------------------------------------------------------------------
    Distribution LossDistHomogeneous::operator()(Real volume,
                                                 const vector<Real>& p) const {
    //--------------------------------------------------------------------------
        volume_ = volume;
        n_ = p.size();
        probability_.clear();
        probability_.resize(n_+1, 0.0);
        vector<Real> prev;
        probability_[0] = 1.0;
        for (Size k = 0; k < n_; k++) {
            prev = probability_;
            probability_[0] = prev[0] * (1.0 - p[k]);
            for (Size i = 1; i <= k; i++)
                probability_[i] = prev[i-1] * p[k] + prev[i] * (1.0 - p[k]);
            probability_[k+1] = prev[k] * p[k];
        }

        excessProbability_.clear();
        excessProbability_.resize(n_+1, 0.0);
        excessProbability_[n_] = probability_[n_];
        for (int k = n_ - 1; k >= 0; k--)
            excessProbability_[k] = excessProbability_[k+1] + probability_[k];

        Distribution dist (nBuckets_, 0.0, maximum_);
        for (Size i = 0; i <= n_; i++) {
            if (volume * i <= maximum_) {
                Size bucket = dist.locate(volume * i);
                dist.addDensity (bucket, probability_[i] / dist.dx(bucket));
                dist.addAverage (bucket, volume*i);
            }
        }

        dist.normalize();

        return dist;
    }

    //--------------------------------------------------------------------------
    Distribution LossDistHomogeneous::operator()(const vector<Real>& nominals,
                                    const vector<Real>& probabilities) const {
    //--------------------------------------------------------------------------
        return operator()(nominals[0], probabilities);
    }

    //--------------------------------------------------------------------------
    Distribution LossDistBucketing::operator()(const vector<Real>& nominals,
                                    const vector<Real>& probabilities) const {
    //--------------------------------------------------------------------------
        QL_REQUIRE (nominals.size() == probabilities.size(), "sizes differ: "
                    << nominals.size() << " vs " << probabilities.size());

        vector<Real> p (nBuckets_, 0.0);
        vector<Real> a (nBuckets_, 0.0);
        vector<Real> ap (nBuckets_, 0.0);

        p[0] = 1.0;
        a[0] = 0.0;
        Real dx = maximum_ / nBuckets_;
        for (Size k = 1; k < nBuckets_; k++)
            a[k] = dx * k + dx/2;

        for (Size i = 0; i < nominals.size(); i++) {
            Real L = nominals[i];
            Real P = probabilities[i];
            for (int k = a.size()-1; k >= 0; k--) {
                if (p[k] > 0) {
                    int u = locateTargetBucket (a[k] + L, k);
                    QL_REQUIRE (u >= 0, "u=" << u << " at i=" << i << " k=" << k);
                    QL_REQUIRE (u >= k, "u=" << u << "<k=" << k << " at i=" << i);

                    Real dp = p[k] * P;
                    if (u == k)
                        a[k] += P * L;
                    else {
                        // no update of a[u] and p[u] if u is beyond grid end
                        if (u < int(nBuckets_)) {
                            // a[u] remains unchanged, if dp = 0
                            if (dp > 0.0) {
                                // on Windows, p[u]/dp could cause a NaN for
                                // some very small values of p[k].
                                // Writing the above as (p[u]/p[k])/P prevents
                                // the NaN. What can I say?
                                Real f = 1.0 / (1.0 + (p[u]/p[k]) / P);
                                a[u] = (1.0 - f) * a[u] + f * (a[k] + L);
                            }
                            /* formulation of Hull-White:
                               if (p[u] + dp > 0)
                                  a[u] = (p[u] * a[u] + dp * (a[k] + L))
                                         / (p[u] + dp);
                            */
                            p[u] += dp;
                        }
                        p[k] -= dp;
                    }
                }
                QL_REQUIRE(a[k] + epsilon_ >= dx * k && a[k] < dx * (k+1),
                           "a out of range at k=" << k << ", contract " << i);
            }
        }

        Distribution dist (nBuckets_, 0.0, maximum_);
        for (Size i = 0; i < nBuckets_; i++) {
            dist.addDensity (i, p[i] / dx);
            dist.addAverage (i, a[i]);
        }

        return dist;
    }

    //--------------------------------------------------------------------------
    int LossDistBucketing::locateTargetBucket (Real loss, Size i0) const {
    //--------------------------------------------------------------------------
        QL_REQUIRE (loss >= 0, "loss " << loss << " must be >= 0");
        Real dx = maximum_ / nBuckets_;
        for (Size i = i0; i < nBuckets_; i++)
            if (dx * i > loss + epsilon_) return i - 1;
        return nBuckets_;
    }

    //--------------------------------------------------------------------------
    Distribution LossDistMonteCarlo::operator()(const vector<Real>& nominals,
                                   const vector<Real>& probabilities) const {
    //--------------------------------------------------------------------------
        Distribution dist (nBuckets_, 0.0, maximum_);
        // KnuthUniformRng rng(seed_);
        // LecuyerUniformRng rng;
        MersenneTwisterUniformRng rng;
        for (Size i = 0; i < simulations_; i++) {
            double e = 0;
            for (Size j = 0; j < nominals.size(); j++) {
                Real r = rng.next().value;
                if (r <= probabilities[j])
                    e += nominals[j];
            }
            dist.add (e + epsilon_);
        }

        dist.normalize();

        return dist;
    }

}