1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2008 Roland Lichters
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/experimental/credit/onefactorcopula.hpp>
using namespace std;
namespace QuantLib {
//-------------------------------------------------------------------------
Real OneFactorCopula::conditionalProbability(Real p, Real m) const {
//-------------------------------------------------------------------------
calculate ();
// FIXME
if (p < 1e-10) return 0;
Real c = correlation_->value();
Real res = cumulativeZ ((inverseCumulativeY (p) - sqrt(c) * m)
/ sqrt (1. - c));
QL_REQUIRE (res >= 0 && res <= 1,
"conditional probability " << res << "out of range");
return res;
}
//-------------------------------------------------------------------------
vector<Real> OneFactorCopula::conditionalProbability(
const vector<Real>& prob,
Real m) const {
//-------------------------------------------------------------------------
calculate ();
vector<Real> p (prob.size(), 0);
for (Size i = 0; i < p.size(); i++)
p[i] = conditionalProbability (prob[i], m);
return p;
}
//-------------------------------------------------------------------------
Real OneFactorCopula::cumulativeY (Real y) const {
//-------------------------------------------------------------------------
calculate ();
QL_REQUIRE (y_.size() > 0, "cumulative Y not tabulated yet");
// linear interpolation on the tabulated cumulative distribution of Y
if (y < y_.front())
return cumulativeY_.front();
for (Size i = 0; i < y_.size(); i++) {
if (y_[i] > y)
return ( (y_[i] - y) * cumulativeY_[i-1]
+ (y - y_[i-1]) * cumulativeY_[i] )
/ (y_[i] - y_[i-1]);
}
return cumulativeY_.back();
}
//-------------------------------------------------------------------------
Real OneFactorCopula::inverseCumulativeY (Real x) const {
//-------------------------------------------------------------------------
calculate ();
QL_REQUIRE (y_.size() > 0, "cumulative Y not tabulated yet");
// linear interpolation on the tabulated cumulative distribution of Y
if (x < cumulativeY_.front())
return y_.front();
for (Size i = 0; i < cumulativeY_.size(); i++) {
if (cumulativeY_[i] > x)
return ( (cumulativeY_[i] - x) * y_[i-1]
+ (x - cumulativeY_[i-1]) * y_[i] )
/ (cumulativeY_[i] - cumulativeY_[i-1]);
}
return y_.back();
}
//-------------------------------------------------------------------------
int OneFactorCopula::checkMoments (Real tolerance) const {
//-------------------------------------------------------------------------
calculate ();
Real norm = 0, mean = 0, var = 0;
for (Size i = 0; i < steps(); i++) {
norm += densitydm (i);
mean += m(i) * densitydm (i);
var += pow (m(i), 2) * densitydm (i);
}
QL_REQUIRE (fabs (norm - 1.0) < tolerance, "norm out of tolerance range");
QL_REQUIRE (fabs (mean) < tolerance, "mean out of tolerance range");
QL_REQUIRE (fabs (var - 1.0) < tolerance, "variance out of tolerance range");
// FIXME: define range for Y via cutoff quantil?
Real zMin = -10;
Real zMax = +10;
Size zSteps = 200;
norm = 0;
mean = 0;
var = 0;
for (Size i = 1; i < zSteps; i++) {
Real z1 = zMin + (zMax - zMin) / zSteps * (i - 1);
Real z2 = zMin + (zMax - zMin) / zSteps * i;
Real z = (z1 + z2) / 2;
Real densitydz = cumulativeZ (z2) - cumulativeZ (z1);
norm += densitydz;
mean += z * densitydz;
var += pow (z, 2) * densitydz;
}
QL_REQUIRE (fabs (norm - 1.0) < tolerance, "norm out of tolerance range");
QL_REQUIRE (fabs (mean) < tolerance, "mean out of tolerance range");
QL_REQUIRE (fabs (var - 1.0) < tolerance, "variance out of tolerance range");
// FIXME: define range for Y via cutoff quantil?
Real yMin = -10;
Real yMax = +10;
Size ySteps = 200;
norm = 0;
mean = 0;
var = 0;
for (Size i = 1; i < ySteps; i++) {
Real y1 = yMin + (yMax - yMin) / ySteps * (i - 1);
Real y2 = yMin + (yMax - yMin) / ySteps * i;
Real y = (y1 + y2) / 2;
Real densitydy = cumulativeY (y2) - cumulativeY (y1);
norm += densitydy;
mean += y * densitydy;
var += y * y * densitydy;
}
QL_REQUIRE (fabs (norm - 1.0) < tolerance, "norm out of tolerance range");
QL_REQUIRE (fabs (mean) < tolerance, "mean out of tolerance range");
QL_REQUIRE (fabs (var - 1.0) < tolerance, "variance out of tolerance range");
return 0;
}
}
|