1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2011 Master IMAFA - Polytech'Nice Sophia - Université de Nice Sophia Antipolis
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/experimental/exoticoptions/kirkspreadoptionengine.hpp>
#include <ql/math/distributions/normaldistribution.hpp>
#include <ql/exercise.hpp>
using namespace std;
namespace QuantLib {
KirkSpreadOptionEngine::KirkSpreadOptionEngine(
const boost::shared_ptr<BlackProcess>& process1,
const boost::shared_ptr<BlackProcess>& process2,
const Handle<Quote>& correlation)
: process1_(process1), process2_(process2), rho_(correlation) {
registerWith(process1_);
registerWith(process2_);
registerWith(rho_);
}
void KirkSpreadOptionEngine::calculate() const {
// First: tests on types
QL_REQUIRE(arguments_.exercise->type() == Exercise::European,
"not an European Option");
boost::shared_ptr<PlainVanillaPayoff> payoff =
boost::dynamic_pointer_cast<PlainVanillaPayoff>(arguments_.payoff);
QL_REQUIRE(payoff, "not a plain-vanilla payoff");
// forward values - futures, so b=0
Real forward1 = process1_->stateVariable()->value();
Real forward2 = process2_->stateVariable()->value();
Date exerciseDate = arguments_.exercise->lastDate();
// Volatilities
Real sigma1 =
process1_->blackVolatility()->blackVol(exerciseDate,forward1);
Real sigma2 =
process2_->blackVolatility()->blackVol(exerciseDate,forward2);
DiscountFactor riskFreeDiscount =
process1_->riskFreeRate()->discount(exerciseDate);
Real strike = payoff->strike();
// Unique F (forward) value for pricing
Real F = forward1/(forward2+strike);
// Its volatility
Real sigma =
sqrt(pow(sigma1,2)
+ pow((sigma2*(forward2/(forward2+strike))),2)
- 2*rho_->value()*sigma1*sigma2*(forward2/(forward2+strike)));
// Day counter and Dates handling variables
DayCounter rfdc = process1_->riskFreeRate()->dayCounter();
Time t = rfdc.yearFraction(process1_->riskFreeRate()->referenceDate(),
arguments_.exercise->lastDate());
// Black-Scholes solution values
Real d1 = (log(F)+ 0.5*pow(sigma,2)*t) / (sigma*sqrt(t));
Real d2 = d1 - sigma*sqrt(t);
CumulativeNormalDistribution cum;
Real Nd1 = cum(d1);
Real Nd2 = cum(d2);
Real NMd1 = cum(-d1);
Real NMd2 = cum(-d2);
if (payoff->optionType()==Option::Call) {
results_.value = riskFreeDiscount*(F*Nd1-Nd2)*(forward2+strike);
} else {
results_.value = riskFreeDiscount*(NMd2 -F*NMd1)*(forward2+strike);
}
}
}
|