File: fdmvppstepcondition.cpp

package info (click to toggle)
quantlib 1.2-2
  • links: PTS
  • area: main
  • in suites: wheezy
  • size: 30,760 kB
  • sloc: cpp: 232,809; ansic: 21,483; sh: 11,108; makefile: 4,717; lisp: 86
file content (152 lines) | stat: -rw-r--r-- 5,610 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2011 Klaus Spanderen

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file fdmvppstatetransitionmatrix.cpp
*/

#include <ql/math/array.hpp>
#include <ql/math/functional.hpp>
#include <ql/methods/finitedifferences/meshers/fdmmesher.hpp>
#include <ql/methods/finitedifferences/operators/fdmlinearoplayout.hpp>
#include <ql/experimental/finitedifferences/fdmvppstepcondition.hpp>
#include <ql/methods/finitedifferences/operators/fdmlinearopiterator.hpp>
#include <ql/methods/finitedifferences/utilities/fdminnervaluecalculator.hpp>

#include <boost/bind.hpp>

namespace QuantLib {
    FdmVPPStepCondition::FdmVPPStepCondition(
        Real heatRate,
        Real pMin, Real pMax,
        Size tMinUp, Size tMinDown,
        Real startUpFuel, Real startUpFixCost,
        Real carbonPrice,
        Size stateDirection,
        const boost::shared_ptr<FdmMesher>& mesher,
        const boost::shared_ptr<FdmInnerValueCalculator>& gasPrice,
        const boost::shared_ptr<FdmInnerValueCalculator>& sparkSpreadPrice)
    : heatRate_        (heatRate),
      pMin_            (pMin),
      pMax_            (pMax),
      tMinUp_          (tMinUp),
      tMinDown_        (tMinDown),
      startUpFuel_     (startUpFuel),
      startUpFixCost_  (startUpFixCost),
      carbonPrice_     (carbonPrice),
      stateDirection_  (stateDirection),
      mesher_          (mesher),
      gasPrice_        (gasPrice),
      sparkSpreadPrice_(sparkSpreadPrice),
      stateEvolveFcts_ (2*tMinUp + tMinDown) {

        QL_REQUIRE(tMinUp_ > 1,   "minimum up time must be greater than one");
        QL_REQUIRE(tMinDown_ > 1, "minimum down time must be greater than one");
        QL_REQUIRE(stateEvolveFcts_.size() ==
                   mesher_->layout()->dim()[stateDirection_],
                   "mesher does not fit to vpp arguments");

        for (Size i=0; i < 2*tMinUp; ++i) {
            if (i < tMinUp) {
                stateEvolveFcts_[i] = boost::function<Real (Real)>(
                    boost::bind(&FdmVPPStepCondition::evolveAtPMin,this, _1));
            }
            else {
                stateEvolveFcts_[i] = boost::function<Real (Real)>(
                    boost::bind(&FdmVPPStepCondition::evolveAtPMax,this, _1));
            }
        }
    }


    void FdmVPPStepCondition::applyTo(Array& a, Time t) const {
        boost::shared_ptr<FdmLinearOpLayout> layout = mesher_->layout();

        const Size nStates = layout->dim()[stateDirection_];
        const FdmLinearOpIterator endIter = layout->end();

        for (FdmLinearOpIterator iter=layout->begin();iter != endIter; ++iter) {
            a[iter.index()] += evolve(iter, t);
        }

        for (FdmLinearOpIterator iter=layout->begin();iter != endIter; ++iter) {
            if (!iter.coordinates()[stateDirection_]) {

                Array x(nStates);
                for (Size i=0; i < nStates; ++i) {
                    x[i] = a[layout->neighbourhood(iter, stateDirection_, i)];
                }

                const Real gasPrice = gasPrice_->innerValue(iter, t);
                x = changeState(gasPrice, x, t);
                for (Size i=0; i < nStates; ++i) {
                    a[layout->neighbourhood(iter, stateDirection_, i)] = x[i];
                }
            }
        }
    }

    Real FdmVPPStepCondition::evolve(
                               const FdmLinearOpIterator& iter, Time t) const {

        const Size state = iter.coordinates()[stateDirection_];

        if (stateEvolveFcts_[state].empty()) {
            return 0;
        }
        else {
            const Real sparkSpread = sparkSpreadPrice_->innerValue(iter, t);
            return stateEvolveFcts_[state](sparkSpread);
        }
    }

    Disposable<Array> FdmVPPStepCondition::changeState(
                        const Real gasPrice, const Array& state, Time t) const {

        const Real startUpCost
                = startUpFixCost_ + (gasPrice + carbonPrice_)*startUpFuel_;

        Array retVal(state.size());

        for (Size i=0; i < tMinUp_-1; ++i) {
            retVal[i] = retVal[tMinUp_ + i]
                      = std::max(state[i+1], state[tMinUp_ + i+1]);
        }

        retVal[tMinUp_-1] = retVal[2*tMinUp_-1]
                          = std::max(state[2*tMinUp_],
                            std::max(state[tMinUp_-1], state[2*tMinUp_-1]));

        for (Size i=0; i < tMinDown_-1; ++i) {
            retVal[2*tMinUp_ + i] = state[2*tMinUp_ + i+1];
        }

        retVal.back() = std::max(state.back(),
            std::max(state.front(), state[tMinUp_]) - startUpCost);

        return retVal;
    }

    Real FdmVPPStepCondition::evolveAtPMin(Real sparkSpread) const {
        return pMin_*(sparkSpread - heatRate_*carbonPrice_);
    }

    Real FdmVPPStepCondition::evolveAtPMax(Real sparkSpread) const {
        return pMax_*(sparkSpread - heatRate_*carbonPrice_);
    }
}