1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2011 Klaus Spanderen
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file fdsimpleextoujumpswingengine.cpp
\brief Finite Differences engine for simple swing options
*/
#include <ql/termstructures/yieldtermstructure.hpp>
#include <ql/experimental/processes/extouwithjumpsprocess.hpp>
#include <ql/experimental/processes/extendedornsteinuhlenbeckprocess.hpp>
#include <ql/methods/finitedifferences/meshers/exponentialjump1dmesher.hpp>
#include <ql/methods/finitedifferences/operators/fdmlinearoplayout.hpp>
#include <ql/methods/finitedifferences/meshers/fdmsimpleprocess1dmesher.hpp>
#include <ql/experimental/finitedifferences/fdmextoujumpmodelinnervalue.hpp>
#include <ql/methods/finitedifferences/meshers/fdmmeshercomposite.hpp>
#include <ql/methods/finitedifferences/meshers/fdmblackscholesmesher.hpp>
#include <ql/methods/finitedifferences/stepconditions/fdmsimpleswingcondition.hpp>
#include <ql/methods/finitedifferences/stepconditions/fdmstepconditioncomposite.hpp>
#include <ql/methods/finitedifferences/solvers/fdm3dimsolver.hpp>
#include <ql/experimental/finitedifferences/fdmsimple3dextoujumpsolver.hpp>
#include <ql/experimental/finitedifferences/fdsimpleextoujumpswingengine.hpp>
#include <ql/methods/finitedifferences/meshers/uniform1dmesher.hpp>
namespace QuantLib {
FdSimpleExtOUJumpSwingEngine::FdSimpleExtOUJumpSwingEngine(
const boost::shared_ptr<ExtOUWithJumpsProcess>& process,
const boost::shared_ptr<YieldTermStructure>& rTS,
Size tGrid, Size xGrid, Size yGrid,
const boost::shared_ptr<Shape>& shape,
const FdmSchemeDesc& schemeDesc)
: process_(process),
rTS_(rTS),
shape_(shape),
tGrid_(tGrid), xGrid_(xGrid), yGrid_(yGrid),
schemeDesc_(schemeDesc) {
}
void FdSimpleExtOUJumpSwingEngine::calculate() const {
boost::shared_ptr<SwingExercise> swingExercise(
boost::dynamic_pointer_cast<SwingExercise>(arguments_.exercise));
QL_REQUIRE(swingExercise, "Swing exercise supported only");
// 1. Layout
std::vector<Size> dim;
dim.push_back(xGrid_);
dim.push_back(yGrid_);
dim.push_back(arguments_.maxExerciseRights+1);
const boost::shared_ptr<FdmLinearOpLayout> layout(
new FdmLinearOpLayout(dim));
// 2. Mesher
const std::vector<Time> exerciseTimes
= swingExercise->exerciseTimes(rTS_->dayCounter(),
rTS_->referenceDate());
const Time maturity = exerciseTimes.back();
const boost::shared_ptr<StochasticProcess1D> ouProcess(
process_->getExtendedOrnsteinUhlenbeckProcess());
const boost::shared_ptr<Fdm1dMesher> xMesher(
new FdmSimpleProcess1dMesher(xGrid_, ouProcess,maturity));
const boost::shared_ptr<Fdm1dMesher> yMesher(
new ExponentialJump1dMesher(yGrid_,
process_->beta(),
process_->jumpIntensity(),
process_->eta()));
const boost::shared_ptr<Fdm1dMesher> exerciseMesher(
new Uniform1dMesher(0, arguments_.maxExerciseRights,
arguments_.maxExerciseRights+1));
std::vector<boost::shared_ptr<Fdm1dMesher> > meshers;
meshers.push_back(xMesher);
meshers.push_back(yMesher);
meshers.push_back(exerciseMesher);
const boost::shared_ptr<FdmMesher> mesher (
new FdmMesherComposite(layout, meshers));
// 3. Calculator
boost::shared_ptr<FdmInnerValueCalculator> calculator(
new FdmZeroInnerValue());
// 4. Step conditions
std::list<boost::shared_ptr<StepCondition<Array> > > stepConditions;
std::list<std::vector<Time> > stoppingTimes;
// 4.1 Bermudan step conditions
stoppingTimes.push_back(exerciseTimes);
const boost::shared_ptr<StrikedTypePayoff> payoff =
boost::dynamic_pointer_cast<StrikedTypePayoff>(arguments_.payoff);
boost::shared_ptr<FdmInnerValueCalculator> exerciseCalculator(
new FdmExtOUJumpModelInnerValue(payoff, mesher, shape_));
stepConditions.push_back(boost::shared_ptr<StepCondition<Array> >(
new FdmSimpleSwingCondition(exerciseTimes, mesher,
exerciseCalculator, 2)));
boost::shared_ptr<FdmStepConditionComposite> conditions(
new FdmStepConditionComposite(stoppingTimes, stepConditions));
// 5. Boundary conditions
const std::vector<boost::shared_ptr<FdmDirichletBoundary> > boundaries;
// 6. set-up solver
FdmSolverDesc solverDesc = { mesher, boundaries, conditions,
calculator, maturity, tGrid_, 0 };
const boost::shared_ptr<FdmSimple3dExtOUJumpSolver> solver(
new FdmSimple3dExtOUJumpSolver(
Handle<ExtOUWithJumpsProcess>(process_),
rTS_, solverDesc, schemeDesc_));
const Real x = process_->initialValues()[0];
const Real y = process_->initialValues()[1];
std::vector< std::pair<Real, Real> > exerciseValues;
for (Size i=arguments_.minExerciseRights;
i <= arguments_.maxExerciseRights; ++i) {
const Real z = Real(i);
exerciseValues.push_back(std::pair<Real, Real>(
solver->valueAt(x, y, z), z));
}
const Real z = std::max_element(exerciseValues.begin(),
exerciseValues.end())->second;
results_.value = solver->valueAt(x, y, z);
}
}
|