1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2005, 2006 Klaus Spanderen
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/math/matrixutilities/pseudosqrt.hpp>
#include <ql/legacy/libormarketmodels/lfmhullwhiteparam.hpp>
namespace QuantLib {
LfmHullWhiteParameterization::LfmHullWhiteParameterization(
const boost::shared_ptr<LiborForwardModelProcess> & process,
const boost::shared_ptr<OptionletVolatilityStructure> & capletVol,
const Matrix& correlation, Size factors)
: LfmCovarianceParameterization(process->size(), factors),
diffusion_ (size_-1, factors_),
fixingTimes_(process->fixingTimes()) {
Matrix sqrtCorr(size_-1, factors_, 1.0);
if (correlation.empty()) {
QL_REQUIRE(factors_ == 1,
"correlation matrix must be given for "
"multi factor models");
} else {
QL_REQUIRE( correlation.rows() == size_-1
&& correlation.rows() == correlation.columns(),
"wrong dimesion of the correlation matrix");
QL_REQUIRE(factors_ <= size_-1,
"too many factors for given LFM process");
Matrix tmpSqrtCorr = pseudoSqrt(correlation,
SalvagingAlgorithm::Spectral);
// reduce to n factor model
// "Reconstructing a valid correlation matrix from invalid data"
// (<http://www.quarchome.org/correlationmatrix.pdf>)
for (Size i=0; i < size_-1; ++i) {
std::transform(
tmpSqrtCorr[i], tmpSqrtCorr[i]+factors_, sqrtCorr[i],
std::bind2nd(std::divides<Real>(),
std::sqrt(std::inner_product(
tmpSqrtCorr[i],tmpSqrtCorr[i]+factors_,
tmpSqrtCorr[i], 0.0))));
}
}
std::vector<Volatility> lambda;
const DayCounter dayCounter = process->index()->dayCounter();
const std::vector<Time> fixingTimes = process->fixingTimes();
const std::vector<Date> fixingDates = process->fixingDates();
for (Size i = 1; i < size_; ++i) {
double cumVar = 0.0;
for (Size j = 1; j < i; ++j) {
cumVar += lambda[i-j-1] * lambda[i-j-1]
* (fixingTimes[j+1] - fixingTimes[j]);
}
const Volatility vol = capletVol->volatility(fixingDates[i], 0.0);
const Volatility var = vol * vol
* capletVol->dayCounter().yearFraction(fixingDates[0],
fixingDates[i]);
lambda.push_back(std::sqrt( (var - cumVar)
/ (fixingTimes[1] - fixingTimes[0])) );
for (Size q=0; q<factors_; ++q) {
diffusion_[i-1][q] = sqrtCorr[i-1][q] * lambda.back();
}
}
covariance_ = diffusion_ * transpose(diffusion_);
}
Size LfmHullWhiteParameterization::nextIndexReset(Time t) const {
return std::upper_bound(fixingTimes_.begin(), fixingTimes_.end(), t)
- fixingTimes_.begin();
}
Disposable<Matrix> LfmHullWhiteParameterization::diffusion(
Time t, const Array&) const {
Matrix tmp(size_, factors_, 0.0);
const Size m = nextIndexReset(t);
for (Size k=m; k<size_; ++k) {
for (Size q=0; q<factors_; ++q) {
tmp[k][q] = diffusion_[k-m][q];
}
}
return tmp;
}
Disposable<Matrix> LfmHullWhiteParameterization::covariance(
Time t, const Array&) const {
Matrix tmp(size_, size_, 0.0);
const Size m = nextIndexReset(t);
for (Size k=m; k<size_; ++k) {
for (Size i=m; i<size_; ++i) {
tmp[k][i] = covariance_[k-m][i-m];
}
}
return tmp;
}
Disposable<Matrix> LfmHullWhiteParameterization::integratedCovariance(
Time t, const Array&) const {
Matrix tmp(size_, size_, 0.0);
Size last = std::lower_bound(fixingTimes_.begin(),
fixingTimes_.end(), t)
- fixingTimes_.begin();
for (Size i=0; i<last; ++i) {
const Time dt = ((i+1<last)? fixingTimes_[i+1] : t )
- fixingTimes_[i];
for (Size k=i; k<size_-1; ++k) {
for (Size l=i; l<size_-1; ++l) {
tmp[k+1][l+1]+= covariance_[k-i][l-i]*dt;
}
}
}
return tmp;
}
}
|