1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2002, 2003 Ferdinando Ametrano
Copyright (C) 2000, 2001, 2002, 2003 RiskMap srl
Copyright (C) 2003 StatPro Italia srl
Copyright (C) 2005 Gary Kennedy
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/math/distributions/bivariatenormaldistribution.hpp>
#include <ql/math/integrals/gaussianquadratures.hpp>
namespace QuantLib {
// Drezner 1978
const Real BivariateCumulativeNormalDistributionDr78::x_[] = {
0.24840615,
0.39233107,
0.21141819,
0.03324666,
0.00082485334
};
const Real BivariateCumulativeNormalDistributionDr78::y_[] = {
0.10024215,
0.48281397,
1.06094980,
1.77972940,
2.66976040000
};
BivariateCumulativeNormalDistributionDr78::
BivariateCumulativeNormalDistributionDr78(Real rho)
: rho_(rho), rho2_(rho*rho) {
QL_REQUIRE(rho>=-1.0,
"rho must be >= -1.0 (" << rho << " not allowed)");
QL_REQUIRE(rho<=1.0,
"rho must be <= 1.0 (" << rho << " not allowed)");
}
Real BivariateCumulativeNormalDistributionDr78::operator()(Real a,
Real b) const {
CumulativeNormalDistribution cumNormalDist;
Real CumNormDistA = cumNormalDist(a);
Real CumNormDistB = cumNormalDist(b);
Real MaxCumNormDistAB = std::max(CumNormDistA, CumNormDistB);
Real MinCumNormDistAB = std::min(CumNormDistA, CumNormDistB);
if (1.0-MaxCumNormDistAB<1e-15)
return MinCumNormDistAB;
if (MinCumNormDistAB<1e-15)
return MinCumNormDistAB;
Real a1 = a / std::sqrt(2.0 * (1.0 - rho_*rho_));
Real b1 = b / std::sqrt(2.0 * (1.0 - rho_*rho_));
Real result=-1.0;
if (a<=0.0 && b<=0 && rho_<=0) {
Real sum=0.0;
for (Size i=0; i<5; i++) {
for (Size j=0;j<5; j++) {
sum += x_[i]*x_[j]*
std::exp(a1*(2.0*y_[i]-a1)+b1*(2.0*y_[j]-b1)
+2.0*rho_*(y_[i]-a1)*(y_[j]-b1));
}
}
result = std::sqrt(1.0 - rho_*rho_)/M_PI*sum;
} else if (a<=0 && b>=0 && rho_>=0) {
BivariateCumulativeNormalDistributionDr78 bivCumNormalDist(-rho_);
result= CumNormDistA - bivCumNormalDist(a, -b);
} else if (a>=0.0 && b<=0.0 && rho_>=0.0) {
BivariateCumulativeNormalDistributionDr78 bivCumNormalDist(-rho_);
result= CumNormDistB - bivCumNormalDist(-a, b);
} else if (a>=0.0 && b>=0.0 && rho_<=0.0) {
result= CumNormDistA + CumNormDistB -1.0 + (*this)(-a, -b);
} else if (a*b*rho_>0.0) {
Real rho1 = (rho_*a-b)*(a>0.0 ? 1.0: -1.0)/
std::sqrt(a*a-2.0*rho_*a*b+b*b);
BivariateCumulativeNormalDistributionDr78 bivCumNormalDist(rho1);
Real rho2 = (rho_*b-a)*(b>0.0 ? 1.0: -1.0)/
std::sqrt(a*a-2.0*rho_*a*b+b*b);
BivariateCumulativeNormalDistributionDr78 CBND2(rho2);
Real delta = (1.0-(a>0.0 ? 1.0: -1.0)*(b>0.0 ? 1.0: -1.0))/4.0;
result= bivCumNormalDist(a, 0.0) + CBND2(b, 0.0) - delta;
} else {
QL_FAIL("case not handled");
}
return result;
}
// West 2004
namespace {
class eqn3 { /* Relates to eqn3 Genz 2004 */
public:
eqn3(Real h, Real k, Real asr) {
hk_ = h * k;
hs_ = (h * h + k * k) / 2;
asr_ = asr;
}
Real operator()(Real x) const {
Real sn = std::sin(asr_ * (-x + 1) * 0.5);
return std::exp((sn * hk_ - hs_) / (1.0 - sn * sn));
}
private:
Real hk_, asr_, hs_;
};
class eqn6 { /* Relates to eqn6 Genz 2004 */
public:
eqn6(Real a, Real c, Real d, Real bs, Real hk)
: a_(a), c_(c), d_(d), bs_(bs), hk_(hk) {}
Real operator()(Real x) const {
Real xs = a_ * (-x + 1);
xs = std::fabs(xs*xs);
Real rs = std::sqrt(1 - xs);
Real asr = -(bs_ / xs + hk_) / 2;
if (asr > -100.0) {
return (a_ * std::exp(asr) *
(std::exp(-hk_ * (1 - rs) / (2 * (1 + rs))) / rs -
(1 + c_ * xs * (1 + d_ * xs))));
} else {
return 0.0;
}
}
private:
Real a_, c_, d_, bs_, hk_;
};
}
BivariateCumulativeNormalDistributionWe04DP::
BivariateCumulativeNormalDistributionWe04DP(Real rho)
: correlation_(rho) {
QL_REQUIRE(rho>=-1.0,
"rho must be >= -1.0 (" << rho << " not allowed)");
QL_REQUIRE(rho<=1.0,
"rho must be <= 1.0 (" << rho << " not allowed)");
}
Real BivariateCumulativeNormalDistributionWe04DP::operator()(
Real x, Real y) const {
/* The implementation is described at section 2.4 "Hybrid
Numerical Integration Algorithms" of "Numerical Computation
of Rectangular Bivariate an Trivariate Normal and t
Probabilities", Genz (2004), Statistics and Computing 14,
151-160. (available at
www.sci.wsu.edu/math/faculty/henz/homepage)
The Gauss-Legendre quadrature have been extracted to
TabulatedGaussLegendre (x,w zero-based)
Tthe functions ot be integrated numerically have been moved
to classes eqn3 and eqn6
Change some magic numbers to M_PI */
TabulatedGaussLegendre gaussLegendreQuad(20);
if (std::fabs(correlation_) < 0.3) {
gaussLegendreQuad.order(6);
} else if (std::fabs(correlation_) < 0.75) {
gaussLegendreQuad.order(12);
}
Real h = -x;
Real k = -y;
Real hk = h * k;
Real BVN = 0.0;
if (std::fabs(correlation_) < 0.925)
{
if (std::fabs(correlation_) > 0)
{
Real asr = std::asin(correlation_);
eqn3 f(h,k,asr);
BVN = gaussLegendreQuad(f);
BVN *= asr * (0.25 / M_PI);
}
BVN += cumnorm_(-h) * cumnorm_(-k);
}
else
{
if (correlation_ < 0)
{
k *= -1;
hk *= -1;
}
if (std::fabs(correlation_) < 1)
{
Real Ass = (1 - correlation_) * (1 + correlation_);
Real a = std::sqrt(Ass);
Real bs = (h-k)*(h-k);
Real c = (4 - hk) / 8;
Real d = (12 - hk) / 16;
Real asr = -(bs / Ass + hk) / 2;
if (asr > -100)
{
BVN = a * std::exp(asr) *
(1 - c * (bs - Ass) * (1 - d * bs / 5) / 3 +
c * d * Ass * Ass / 5);
}
if (-hk < 100)
{
Real B = std::sqrt(bs);
BVN -= std::exp(-hk / 2) * 2.506628274631 *
cumnorm_(-B / a) * B *
(1 - c * bs * (1 - d * bs / 5) / 3);
}
a /= 2;
eqn6 f(a,c,d,bs,hk);
BVN += gaussLegendreQuad(f);
BVN /= (-2.0 * M_PI);
}
if (correlation_ > 0) {
BVN += cumnorm_(-std::max(h, k));
} else {
BVN *= -1;
if (k > h) {
BVN += cumnorm_(k) - cumnorm_(h);
}
}
}
return BVN;
}
}
|