1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2007 Franois du Vignaud
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#ifndef quantlib_tap_correlations_hpp
#define quantlib_tap_correlations_hpp
#include <ql/types.hpp>
#include <ql/utilities/disposable.hpp>
#include <ql/math/matrix.hpp>
#include <ql/math/optimization/costfunction.hpp>
#include <boost/function.hpp>
#include <vector>
namespace QuantLib {
//! Returns the Triangular Angles Parametrized correlation matrix
/*! The matrix \f$ m \f$ is filled with values corresponding to angles
given in the \f$ angles \f$ vector. See equation (24) in
"Parameterizing correlations: a geometric interpretation"
by Francesco Rapisarda, Damiano Brigo, Fabio Mercurio
\test
- the correctness of the results is tested by reproducing
known good data.
- the correctness of the results is tested by checking
returned values against numerical calculations.
*/
Disposable<Matrix>
triangularAnglesParametrization(const Array& angles,
Size matrixSize,
Size rank);
Disposable<Matrix>
lmmTriangularAnglesParametrization(const Array& angles,
Size matrixSize,
Size rank);
// the same function using the angles parameterized by the following
// transformation \f[ \teta_i = \frac{\Pi}{2} - arctan(x_i)\f]
Disposable<Matrix>
triangularAnglesParametrizationUnconstrained(const Array& x,
Size matrixSize,
Size rank);
Disposable<Matrix>
lmmTriangularAnglesParametrizationUnconstrained(const Array& x,
Size matrixSize,
Size rank);
//! Returns the rank reduced Triangular Angles Parametrized correlation matrix
/*! The matrix \f$ m \f$ is filled with values corresponding to angles
corresponding to the 3D spherical spiral paramterized by
\f$ alpha \f$, \f$ t0 \f$, \f$ epsilon \f$ values. See equation (32) in
"Parameterizing correlations: a geometric interpretation"
by Francesco Rapisarda, Damiano Brigo, Fabio Mercurio
\test
- the correctness of the results is tested by reproducing
known good data.
- the correctness of the results is tested by checking
returned values against numerical calculations.
*/
Disposable<Matrix>
triangularAnglesParametrizationRankThree(Real alpha,
Real t0,
Real epsilon,
Size nbRows);
// the same function with parameters packed in an Array
Disposable<Matrix>
triangularAnglesParametrizationRankThreeVectorial(const Array& paramters,
Size nbRows);
// Cost function associated with Frobenius norm.
// <http://en.wikipedia.org/wiki/Matrix_norm>
class FrobeniusCostFunction : public CostFunction{
public:
FrobeniusCostFunction(
const Matrix& target,
const boost::function<Disposable<Matrix>(const Array&,
Size,
Size)>& f,
Size matrixSize,
Size rank)
: target_(target), f_(f), matrixSize_(matrixSize), rank_(rank) {}
Real value (const Array &x) const;
Disposable<Array> values (const Array &x) const;
private:
Matrix target_;
boost::function<Disposable<Matrix>(const Array&, Size, Size)> f_;
Size matrixSize_;
Size rank_;
};
}
#endif
|