1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2009 Andreas Gaida
Copyright (C) 2009 Ralph Schreyer
Copyright (C) 2009 Klaus Spanderen
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file fdmbackwardsolver.cpp
*/
#include <ql/methods/finitedifferences/finitedifferencemodel.hpp>
#include <ql/methods/finitedifferences/solvers/fdmbackwardsolver.hpp>
#include <ql/methods/finitedifferences/schemes/douglasscheme.hpp>
#include <ql/methods/finitedifferences/schemes/craigsneydscheme.hpp>
#include <ql/methods/finitedifferences/schemes/hundsdorferscheme.hpp>
#include <ql/methods/finitedifferences/schemes/impliciteulerscheme.hpp>
#include <ql/methods/finitedifferences/schemes/expliciteulerscheme.hpp>
#include <ql/methods/finitedifferences/schemes/modifiedcraigsneydscheme.hpp>
#include <ql/methods/finitedifferences/stepconditions/fdmstepconditioncomposite.hpp>
namespace QuantLib {
FdmSchemeDesc::FdmSchemeDesc(FdmSchemeType aType, Real aTheta, Real aMu)
: type(aType), theta(aTheta), mu(aMu) { }
FdmSchemeDesc FdmSchemeDesc::Douglas() {
return FdmSchemeDesc(FdmSchemeDesc::DouglasType, 0.5, 0.0);
}
FdmSchemeDesc FdmSchemeDesc::CraigSneyd() {
return FdmSchemeDesc(FdmSchemeDesc::CraigSneydType,0.5, 0.5);
}
FdmSchemeDesc FdmSchemeDesc::ModifiedCraigSneyd() {
return FdmSchemeDesc(FdmSchemeDesc::ModifiedCraigSneydType,
1.0/3.0, 1.0/3.0);
}
FdmSchemeDesc FdmSchemeDesc::Hundsdorfer() {
return FdmSchemeDesc(FdmSchemeDesc::HundsdorferType,
0.5+std::sqrt(3.0)/6, 0.5);
}
FdmSchemeDesc FdmSchemeDesc::ModifiedHundsdorfer() {
return FdmSchemeDesc(FdmSchemeDesc::HundsdorferType,
1.0-std::sqrt(2.0)/2, 0.5);
}
FdmSchemeDesc FdmSchemeDesc::ExplicitEuler() {
return FdmSchemeDesc(FdmSchemeDesc::ExplicitEulerType, 0.0, 0.0);
}
FdmSchemeDesc FdmSchemeDesc::ImplicitEuler() {
return FdmSchemeDesc(FdmSchemeDesc::ImplicitEulerType, 0.0, 0.0);
}
FdmBackwardSolver::FdmBackwardSolver(
const boost::shared_ptr<FdmLinearOpComposite>& map,
const FdmBoundaryConditionSet& bcSet,
const boost::shared_ptr<FdmStepConditionComposite> condition,
const FdmSchemeDesc& schemeDesc)
: map_(map), bcSet_(bcSet),
condition_((condition) ? condition
: boost::shared_ptr<FdmStepConditionComposite>(
new FdmStepConditionComposite(
std::list<std::vector<Time> >(),
FdmStepConditionComposite::Conditions()))),
schemeDesc_(schemeDesc) {
}
void FdmBackwardSolver::rollback(FdmBackwardSolver::array_type& rhs,
Time from, Time to,
Size steps, Size dampingSteps) {
const Time deltaT = from - to;
const Size allSteps = steps + dampingSteps;
const Time dampingTo = from - (deltaT*dampingSteps)/allSteps;
if ( dampingSteps
&& schemeDesc_.type != FdmSchemeDesc::ImplicitEulerType) {
ImplicitEulerScheme implicitEvolver(map_, bcSet_);
FiniteDifferenceModel<ImplicitEulerScheme>
dampingModel(implicitEvolver, condition_->stoppingTimes());
dampingModel.rollback(rhs, from, dampingTo,
dampingSteps, *condition_);
}
switch (schemeDesc_.type) {
case FdmSchemeDesc::HundsdorferType:
{
HundsdorferScheme hsEvolver(schemeDesc_.theta, schemeDesc_.mu,
map_, bcSet_);
FiniteDifferenceModel<HundsdorferScheme>
hsModel(hsEvolver, condition_->stoppingTimes());
hsModel.rollback(rhs, dampingTo, to, steps, *condition_);
}
break;
case FdmSchemeDesc::DouglasType:
{
DouglasScheme dsEvolver(schemeDesc_.theta, map_, bcSet_);
FiniteDifferenceModel<DouglasScheme>
dsModel(dsEvolver, condition_->stoppingTimes());
dsModel.rollback(rhs, dampingTo, to, steps, *condition_);
}
break;
case FdmSchemeDesc::CraigSneydType:
{
CraigSneydScheme csEvolver(schemeDesc_.theta, schemeDesc_.mu,
map_, bcSet_);
FiniteDifferenceModel<CraigSneydScheme>
csModel(csEvolver, condition_->stoppingTimes());
csModel.rollback(rhs, dampingTo, to, steps, *condition_);
}
break;
case FdmSchemeDesc::ModifiedCraigSneydType:
{
ModifiedCraigSneydScheme csEvolver(schemeDesc_.theta,
schemeDesc_.mu,
map_, bcSet_);
FiniteDifferenceModel<ModifiedCraigSneydScheme>
mcsModel(csEvolver, condition_->stoppingTimes());
mcsModel.rollback(rhs, dampingTo, to, steps, *condition_);
}
break;
case FdmSchemeDesc::ImplicitEulerType:
{
ImplicitEulerScheme implicitEvolver(map_, bcSet_);
FiniteDifferenceModel<ImplicitEulerScheme>
implicitModel(implicitEvolver, condition_->stoppingTimes());
implicitModel.rollback(rhs, from, to, allSteps, *condition_);
}
break;
case FdmSchemeDesc::ExplicitEulerType:
{
ExplicitEulerScheme explicitEvolver(map_, bcSet_);
FiniteDifferenceModel<ExplicitEulerScheme>
explicitModel(explicitEvolver, condition_->stoppingTimes());
explicitModel.rollback(rhs, dampingTo, to, steps, *condition_);
}
break;
default:
QL_FAIL("Unknown scheme type");
}
}
}
|