1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2002, 2003, 2011 Ferdinando Ametrano
Copyright (C) 2000, 2001, 2002, 2003 RiskMap srl
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/methods/finitedifferences/tridiagonaloperator.hpp>
namespace QuantLib {
TridiagonalOperator::TridiagonalOperator(Size size) {
if (size>=2) {
n_ = size;
diagonal_ = Array(size);
lowerDiagonal_ = Array(size-1);
upperDiagonal_ = Array(size-1);
temp_ = Array(size);
} else if (size==0) {
n_ = 0;
diagonal_ = Array(0);
lowerDiagonal_ = Array(0);
upperDiagonal_ = Array(0);
temp_ = Array(0);
} else {
QL_FAIL("invalid size (" << size << ") for tridiagonal operator "
"(must be null or >= 2)");
}
}
TridiagonalOperator::TridiagonalOperator(const Array& low,
const Array& mid,
const Array& high)
: n_(mid.size()),
diagonal_(mid), lowerDiagonal_(low), upperDiagonal_(high), temp_(n_) {
QL_REQUIRE(low.size() == n_-1,
"low diagonal vector of size " << low.size() <<
" instead of " << n_-1);
QL_REQUIRE(high.size() == n_-1,
"high diagonal vector of size " << high.size() <<
" instead of " << n_-1);
}
TridiagonalOperator::TridiagonalOperator(
const Disposable<TridiagonalOperator>& from) {
swap(const_cast<Disposable<TridiagonalOperator>&>(from));
}
Disposable<Array> TridiagonalOperator::applyTo(const Array& v) const {
QL_REQUIRE(n_!=0,
"uninitialized TridiagonalOperator");
QL_REQUIRE(v.size()==n_,
"vector of the wrong size " << v.size() <<
" instead of " << n_);
Array result(n_);
std::transform(diagonal_.begin(), diagonal_.end(),
v.begin(),
result.begin(),
std::multiplies<Real>());
// matricial product
result[0] += upperDiagonal_[0]*v[1];
for (Size j=1; j<=n_-2; j++)
result[j] += lowerDiagonal_[j-1]*v[j-1]+
upperDiagonal_[j]*v[j+1];
result[n_-1] += lowerDiagonal_[n_-2]*v[n_-2];
return result;
}
Disposable<Array> TridiagonalOperator::solveFor(const Array& rhs) const {
Array result(rhs.size());
solveFor(rhs, result);
return result;
}
void TridiagonalOperator::solveFor(const Array& rhs,
Array& result) const {
QL_REQUIRE(n_!=0,
"uninitialized TridiagonalOperator");
QL_REQUIRE(rhs.size()==n_,
"rhs vector of size " << rhs.size() <<
" instead of " << n_);
Real bet = diagonal_[0];
QL_REQUIRE(!close(bet, 0.0),
"diagonal's first element (" << bet <<
") cannot be close to zero");
result[0] = rhs[0]/bet;
for (Size j=1; j<=n_-1; ++j) {
temp_[j] = upperDiagonal_[j-1]/bet;
bet = diagonal_[j]-lowerDiagonal_[j-1]*temp_[j];
QL_ENSURE(!close(bet, 0.0), "division by zero");
result[j] = (rhs[j] - lowerDiagonal_[j-1]*result[j-1])/bet;
}
// cannot be j>=0 with Size j
for (Size j=n_-2; j>0; --j)
result[j] -= temp_[j+1]*result[j+1];
result[0] -= temp_[1]*result[1];
}
Disposable<Array> TridiagonalOperator::SOR(const Array& rhs,
Real tol) const {
QL_REQUIRE(n_!=0,
"uninitialized TridiagonalOperator");
QL_REQUIRE(rhs.size()==n_,
"rhs vector of size " << rhs.size() <<
" instead of " << n_);
// initial guess
Array result = rhs;
// solve tridiagonal system with SOR technique
Real omega = 1.5;
Real err = 2.0*tol;
Real temp;
for (Size sorIteration=0; err>tol ; ++sorIteration) {
QL_REQUIRE(sorIteration<100000,
"tolerance (" << tol << ") not reached in " <<
sorIteration << " iterations. " <<
"The error still is " << err);
temp = omega * (rhs[0] -
upperDiagonal_[0] * result[1]-
diagonal_[0] * result[0])/diagonal_[0];
err = temp*temp;
result[0] += temp;
Size i;
for (i=1; i<n_-1 ; ++i) {
temp = omega *(rhs[i] -
upperDiagonal_[i] * result[i+1]-
diagonal_[i] * result[i] -
lowerDiagonal_[i-1] * result[i-1])/diagonal_[i];
err += temp * temp;
result[i] += temp;
}
temp = omega * (rhs[i] -
diagonal_[i] * result[i] -
lowerDiagonal_[i-1] * result[i-1])/diagonal_[i];
err += temp*temp;
result[i] += temp;
}
return result;
}
Disposable<TridiagonalOperator>
TridiagonalOperator::identity(Size size) {
TridiagonalOperator I(Array(size-1, 0.0), // lower diagonal
Array(size, 1.0), // diagonal
Array(size-1, 0.0)); // upper diagonal
return I;
}
}
|