File: parametricexercise.cpp

package info (click to toggle)
quantlib 1.2-2
  • links: PTS
  • area: main
  • in suites: wheezy
  • size: 30,760 kB
  • sloc: cpp: 232,809; ansic: 21,483; sh: 11,108; makefile: 4,717; lisp: 86
file content (137 lines) | stat: -rw-r--r-- 5,150 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2006 StatPro Italia srl

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

#include <ql/methods/montecarlo/parametricexercise.hpp>
#include <ql/math/optimization/problem.hpp>
#include <ql/math/optimization/constraint.hpp>

namespace QuantLib {

    namespace {

        class ValueEstimate : public CostFunction {
          public:
            ValueEstimate(const std::vector<NodeData>& simulationData,
                          const ParametricExercise& exercise,
                          Size exerciseIndex);
            Real value(const Array& parameters) const;
            Disposable<Array> values(const Array&) const {
                QL_FAIL("values method not implemented");
            }
        private:
            const std::vector<NodeData>& simulationData_;
            const ParametricExercise& exercise_;
            Size exerciseIndex_;
            mutable std::vector<Real> parameters_;
        };

        ValueEstimate::ValueEstimate(
                                 const std::vector<NodeData>& simulationData,
                                 const ParametricExercise& exercise,
                                 Size exerciseIndex)
        : simulationData_(simulationData), exercise_(exercise),
          exerciseIndex_(exerciseIndex),
          parameters_(exercise.numberOfParameters()[exerciseIndex]) {
            for (Size i=0; i<simulationData_.size(); ++i) {
                if (simulationData_[i].isValid)
                    return;
            }
            QL_FAIL("no valid paths");
        }

        Real ValueEstimate::value(const Array& parameters) const {
            std::copy(parameters.begin(), parameters.end(),
                      parameters_.begin());
            Real sum = 0.0;
            Size n = 0;
            for (Size i=0; i<simulationData_.size(); ++i) {
                if (simulationData_[i].isValid) {
                    ++n;
                    if (exercise_.exercise(exerciseIndex_,
                                           parameters_,
                                           simulationData_[i].values))
                        sum += simulationData_[i].exerciseValue;
                    else
                        sum += simulationData_[i].cumulatedCashFlows;
                }
            }
            return -sum/n;
        }

    }



    Real genericEarlyExerciseOptimization(
                          std::vector<std::vector<NodeData> >& simulationData,
                          const ParametricExercise& exercise,
                          std::vector<std::vector<Real> >& parameters,
                          const EndCriteria& endCriteria,
                          OptimizationMethod& method) {

        Size steps = simulationData.size();
        parameters.resize(steps-1);

        for (Size i=steps-1; i!=0; --i) {
            const std::vector<NodeData>& exerciseData = simulationData[i];

            parameters[i-1].resize(exercise.numberOfParameters()[i-1]);


            // optimize
            ValueEstimate f(exerciseData, exercise, i-1);

            Array guess(parameters[i-1].size());
            exercise.guess(i-1, parameters[i-1]);
            std::copy(parameters[i-1].begin(), parameters[i-1].end(),
                      guess.begin());

            NoConstraint c;

            Problem p(f, c, guess);
            method.minimize(p, endCriteria);

            Array result = p.currentValue();
            std::copy(result.begin(), result.end(),
                      parameters[i-1].begin());

            std::vector<NodeData>& previousData = simulationData[i-1];
            for (Size j=0; j<previousData.size(); ++j) {
                if (exerciseData[j].isValid) {
                    if (exercise.exercise(i-1,
                                          parameters[i-1],
                                          exerciseData[j].values))
                        previousData[j].cumulatedCashFlows +=
                            exerciseData[j].exerciseValue;
                    else
                        previousData[j].cumulatedCashFlows +=
                            exerciseData[j].cumulatedCashFlows;
                }
            }
        }

        Real sum = 0.0;
        const std::vector<NodeData>& initialData = simulationData.front();
        for (Size i=0; i<initialData.size(); ++i)
            sum += initialData[i].cumulatedCashFlows;
        return sum/initialData.size();
    }

}