File: expcorrelations.cpp

package info (click to toggle)
quantlib 1.2-2
  • links: PTS
  • area: main
  • in suites: wheezy
  • size: 30,760 kB
  • sloc: cpp: 232,809; ansic: 21,483; sh: 11,108; makefile: 4,717; lisp: 86
file content (145 lines) | stat: -rw-r--r-- 5,783 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2007 Ferdinando Ametrano
 Copyright (C) 2007 Marco Bianchetti
 Copyright (C) 2007 Giorgio Facchinetti
 Copyright (C) 2007 Franois du Vignaud

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

#include <ql/models/marketmodels/correlations/expcorrelations.hpp>
#include <ql/models/marketmodels/correlations/timehomogeneousforwardcorrelation.hpp>
#include <ql/models/marketmodels/utilities.hpp>
#include <ql/math/comparison.hpp>
#include <ql/utilities/dataformatters.hpp>

namespace QuantLib {

    Disposable<Matrix> exponentialCorrelations(
                                        const std::vector<Time>& rateTimes,
                                        Real longTermCorr,
                                        Real beta,
                                        Real gamma,
                                        Time time) {
        // preliminary checks
        checkIncreasingTimes(rateTimes);
        QL_REQUIRE(longTermCorr<=1.0 && longTermCorr>=0.0,
                   "Long term correlation (" << longTermCorr <<
                   ") outside [0;1] interval");
        QL_REQUIRE(beta>=0.0,
                   "beta (" << beta <<
                   ") must be greater than zero");
        QL_REQUIRE(gamma<=1.0 && gamma>=0.0,
                   "gamma (" << gamma <<
                   ") outside [0;1] interval");

        // Calculate correlation matrix
        Size nbRows = rateTimes.size()-1;
        Matrix correlations(nbRows, nbRows, 0.0);
        for (Size i=0; i<nbRows; ++i) {
            // correlation is defined only between
            // (alive) stochastic rates...
            if (time<=rateTimes[i]) {
                correlations[i][i] = 1.0;
                for (Size j=0; j<i; ++j) {
                    if (time<=rateTimes[j]) {
                        correlations[i][j] = correlations[j][i] =
                            longTermCorr + (1.0-longTermCorr) *
                            std::exp(-beta*std::fabs(
                                std::pow(rateTimes[i]-time, gamma) -
                                std::pow(rateTimes[j]-time, gamma)
                                )
                            );
                    }
                }
            }
        }
        return correlations;
    }


    ExponentialForwardCorrelation::ExponentialForwardCorrelation(
                                    const std::vector<Time>& rateTimes,
                                    Real longTermCorr,
                                    Real beta,
                                    Real gamma,
                                    const std::vector<Time>& times)
    : numberOfRates_(rateTimes.empty() ? 0 : rateTimes.size()-1),
      longTermCorr_(longTermCorr), beta_(beta), gamma_(gamma),
      rateTimes_(rateTimes),
      times_(times) {

        QL_REQUIRE(numberOfRates_>1,
                   "Rate times must contain at least two values");

        checkIncreasingTimes(rateTimes_);

        // corrTimes must include all rateTimes but the last
        if (times_ == std::vector<Time>())
            times_ = std::vector<Time>(rateTimes_.begin(),
                                       rateTimes_.end()-1);
        else
            checkIncreasingTimes(times_);

        if (close(gamma,1.0)) {
            std::vector<Time> temp(rateTimes_.begin(), rateTimes_.end()-1);
            QL_REQUIRE(times_==temp,
                       "corr times " << io::sequence(times_)
                       << " must be equal to (all) rate times (but the last) "
                       << io::sequence(temp));
            Matrix c = exponentialCorrelations(
                rateTimes_, longTermCorr_, beta_, 1.0, 0.0);
            correlations_ =
                TimeHomogeneousForwardCorrelation::evolvedMatrices(c);
        } else {
            // FIXME should check here that all rateTimes but the last
            // are included in rateTimes
            QL_REQUIRE(times_.back()<=rateTimes_[numberOfRates_],
                       "last corr time " << times_.back() <<
                       "is after next-to-last rate time " <<
                       rateTimes_[numberOfRates_]);
            correlations_.resize(times_.size());
            Time time = times_[0]/2.0;
            correlations_[0] = exponentialCorrelations(
                rateTimes_, longTermCorr_, beta_, gamma_, time);
            for (Size k=1; k<times_.size(); ++k) {
                time = (times_[k]+times_[k-1])/2.0;
                correlations_[k] = exponentialCorrelations(
                    rateTimes_, longTermCorr_, beta_, gamma_, time);
            }
        }
    }

    const std::vector<Time>&
    ExponentialForwardCorrelation::times() const {
        return times_;
    }

    const std::vector<Time>&
    ExponentialForwardCorrelation::rateTimes() const {
        return rateTimes_;
    }

    const std::vector<Matrix>&
    ExponentialForwardCorrelation::correlations() const {
        return correlations_;
    }

    Size ExponentialForwardCorrelation::numberOfRates() const {
        return numberOfRates_;
    }

}