File: lognormalcotswapratepc.cpp

package info (click to toggle)
quantlib 1.2-2
  • links: PTS
  • area: main
  • in suites: wheezy
  • size: 30,760 kB
  • sloc: cpp: 232,809; ansic: 21,483; sh: 11,108; makefile: 4,717; lisp: 86
file content (160 lines) | stat: -rw-r--r-- 6,405 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2006, 2007 Ferdinando Ametrano
 Copyright (C) 2006, 2007 Mark Joshi

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

#include <ql/models/marketmodels/evolvers/lognormalcotswapratepc.hpp>
#include <ql/models/marketmodels/marketmodel.hpp>
#include <ql/models/marketmodels/evolutiondescription.hpp>
#include <ql/models/marketmodels/browniangenerator.hpp>
#include <ql/models/marketmodels/driftcomputation/smmdriftcalculator.hpp>

namespace QuantLib {

    LogNormalCotSwapRatePc::LogNormalCotSwapRatePc(
                           const boost::shared_ptr<MarketModel>& marketModel,
                           const BrownianGeneratorFactory& factory,
                           const std::vector<Size>& numeraires,
                           Size initialStep)
    : marketModel_(marketModel),
      numeraires_(numeraires),
      initialStep_(initialStep),
      numberOfRates_(marketModel->numberOfRates()),
      numberOfFactors_(marketModel_->numberOfFactors()),
      curveState_(marketModel->evolution().rateTimes()),
      swapRates_(marketModel->initialRates()),
      displacements_(marketModel->displacements()),
      logSwapRates_(numberOfRates_), initialLogSwapRates_(numberOfRates_),
      drifts1_(numberOfRates_), drifts2_(numberOfRates_),
      initialDrifts_(numberOfRates_),
      brownians_(numberOfFactors_), correlatedBrownians_(numberOfRates_),
      alive_(marketModel->evolution().firstAliveRate())
    {
        checkCompatibility(marketModel->evolution(), numeraires);

        Size steps = marketModel->evolution().numberOfSteps();

        generator_ = factory.create(numberOfFactors_, steps-initialStep_);

        currentStep_ = initialStep_;

        calculators_.reserve(steps);
        fixedDrifts_.reserve(steps);
        for (Size j=0; j<steps; ++j) {
            const Matrix& A = marketModel_->pseudoRoot(j);
            calculators_.push_back(SMMDriftCalculator(A,
                                                      displacements_,
                                                      marketModel->evolution().rateTaus(),
                                                      numeraires[j],
                                                      alive_[j]));
            std::vector<Real> fixed(numberOfRates_);
            for (Size k=0; k<numberOfRates_; ++k) {
                Real variance =
                    std::inner_product(A.row_begin(k), A.row_end(k),
                                       A.row_begin(k), 0.0);
                fixed[k] = -0.5*variance;
            }
            fixedDrifts_.push_back(fixed);
        }

        setCoterminalSwapRates(marketModel_->initialRates());
    }

    const std::vector<Size>& LogNormalCotSwapRatePc::numeraires() const {
        return numeraires_;
    }

    void LogNormalCotSwapRatePc::setCoterminalSwapRates(const std::vector<Real>& swapRates)
    {
        QL_REQUIRE(swapRates.size()==numberOfRates_,
                   "mismatch between swapRates and rateTimes");
        for (Size i=0; i<numberOfRates_; ++i)
            initialLogSwapRates_[i] = std::log(swapRates[i] +
                                               displacements_[i]);
        curveState_.setOnCoterminalSwapRates(swapRates);
        calculators_[initialStep_].compute(curveState_, initialDrifts_);
    }

    void LogNormalCotSwapRatePc::setInitialState(const CurveState& cs) {
        // why??
        const CoterminalSwapCurveState* cotcs = dynamic_cast<const CoterminalSwapCurveState*>(&cs);
        const std::vector<Real>& swapRates = cotcs->coterminalSwapRates();
        setCoterminalSwapRates(swapRates);
    }

    Real LogNormalCotSwapRatePc::startNewPath() {
        currentStep_ = initialStep_;
        std::copy(initialLogSwapRates_.begin(), initialLogSwapRates_.end(),
                  logSwapRates_.begin());
        return generator_->nextPath();
    }

    Real LogNormalCotSwapRatePc::advanceStep()
    {
         //we're going from T1 to T2

        //a) compute drifts D1 at T1;
        if (currentStep_ > initialStep_)
            calculators_[currentStep_].compute(curveState_, drifts1_);
        else
            std::copy(initialDrifts_.begin(), initialDrifts_.end(),
                      drifts1_.begin());

        //b) evolve forwards up to T2 using D1;
        Real weight = generator_->nextStep(brownians_);
        const Matrix& A = marketModel_->pseudoRoot(currentStep_);
        const std::vector<Real>& fixedDrift = fixedDrifts_[currentStep_];

        Size i, alive = alive_[currentStep_];
        for (i=alive; i<numberOfRates_; ++i) {
            logSwapRates_[i] += drifts1_[i] + fixedDrift[i];
            logSwapRates_[i] +=
                std::inner_product(A.row_begin(i), A.row_end(i),
                                   brownians_.begin(), 0.0);
            swapRates_[i] = std::exp(logSwapRates_[i]) - displacements_[i];
        }

        // intermediate curve state update
        curveState_.setOnCoterminalSwapRates(swapRates_);

        //c) recompute drifts D2 using the predicted forwards;
        calculators_[currentStep_].compute(curveState_, drifts2_);

        //d) correct forwards using both drifts
        for (i=alive; i<numberOfRates_; ++i) {
            logSwapRates_[i] += (drifts2_[i]-drifts1_[i])/2.0;
            swapRates_[i] = std::exp(logSwapRates_[i]) - displacements_[i];
        }

        //e) update curve state
        curveState_.setOnCoterminalSwapRates(swapRates_);

        ++currentStep_;

        return weight;
    }

    Size LogNormalCotSwapRatePc::currentStep() const {
        return currentStep_;
    }

    const CurveState& LogNormalCotSwapRatePc::currentState() const {
        return curveState_;
    }

}