1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2007 Giorgio Facchinetti
Copyright (C) 2007 Chiara Fornarola
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/models/marketmodels/evolvers/normalfwdratepc.hpp>
#include <ql/models/marketmodels/marketmodel.hpp>
#include <ql/models/marketmodels/evolutiondescription.hpp>
#include <ql/models/marketmodels/browniangenerator.hpp>
#include <ql/models/marketmodels/driftcomputation/lmmnormaldriftcalculator.hpp>
namespace QuantLib {
NormalFwdRatePc::NormalFwdRatePc(
const boost::shared_ptr<MarketModel>& marketModel,
const BrownianGeneratorFactory& factory,
const std::vector<Size>& numeraires,
Size initialStep)
: marketModel_(marketModel),
numeraires_(numeraires),
initialStep_(initialStep),
numberOfRates_(marketModel->numberOfRates()),
numberOfFactors_(marketModel_->numberOfFactors()),
curveState_(marketModel->evolution().rateTimes()),
forwards_(marketModel->initialRates()),
initialForwards_(marketModel->initialRates()),
drifts1_(numberOfRates_), drifts2_(numberOfRates_),
initialDrifts_(numberOfRates_), brownians_(numberOfFactors_),
correlatedBrownians_(numberOfRates_),
alive_(marketModel->evolution().firstAliveRate())
{
checkCompatibility(marketModel->evolution(), numeraires);
Size steps = marketModel->evolution().numberOfSteps();
generator_ = factory.create(numberOfFactors_, steps-initialStep_);
currentStep_ = initialStep_;
calculators_.reserve(steps);
for (Size j=0; j<steps; ++j) {
const Matrix& A = marketModel_->pseudoRoot(j);
calculators_.push_back(
LMMNormalDriftCalculator(A,
marketModel->evolution().rateTaus(),
numeraires[j],
alive_[j]));
/*
for (Size k=0; k<numberOfRates_; ++k) {
Real variance =
std::inner_product(A.row_begin(k), A.row_end(k),
A.row_begin(k), 0.0);
}
*/
}
setForwards(marketModel_->initialRates());
}
const std::vector<Size>& NormalFwdRatePc::numeraires() const {
return numeraires_;
}
void NormalFwdRatePc::setForwards(const std::vector<Real>& forwards)
{
QL_REQUIRE(forwards.size()==numberOfRates_,
"mismatch between forwards and rateTimes");
for (Size i=0; i<numberOfRates_; ++i)
calculators_[initialStep_].compute(forwards, initialDrifts_);
}
void NormalFwdRatePc::setInitialState(const CurveState& cs) {
setForwards(cs.forwardRates());
}
Real NormalFwdRatePc::startNewPath() {
currentStep_ = initialStep_;
std::copy(initialForwards_.begin(), initialForwards_.end(),
forwards_.begin());
return generator_->nextPath();
}
Real NormalFwdRatePc::advanceStep()
{
// we're going from T1 to T2
// a) compute drifts D1 at T1;
if (currentStep_ > initialStep_) {
calculators_[currentStep_].compute(forwards_, drifts1_);
} else {
std::copy(initialDrifts_.begin(), initialDrifts_.end(),
drifts1_.begin());
}
// b) evolve forwards up to T2 using D1;
Real weight = generator_->nextStep(brownians_);
const Matrix& A = marketModel_->pseudoRoot(currentStep_);
Size i, alive = alive_[currentStep_];
for (i=alive; i<numberOfRates_; ++i) {
forwards_[i] += drifts1_[i] ;
forwards_[i] +=
std::inner_product(A.row_begin(i), A.row_end(i),
brownians_.begin(), 0.0);
}
// c) recompute drifts D2 using the predicted forwards;
calculators_[currentStep_].compute(forwards_, drifts2_);
// d) correct forwards using both drifts
for (i=alive; i<numberOfRates_; ++i) {
forwards_[i] += (drifts2_[i]-drifts1_[i])/2.0;
}
// e) update curve state
curveState_.setOnForwardRates(forwards_);
++currentStep_;
return weight;
}
Size NormalFwdRatePc::currentStep() const {
return currentStep_;
}
const CurveState& NormalFwdRatePc::currentState() const {
return curveState_;
}
}
|