1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2008 Mark Joshi
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/models/marketmodels/evolvers/svddfwdratepc.hpp>
#include <ql/models/marketmodels/marketmodel.hpp>
#include <ql/models/marketmodels/evolutiondescription.hpp>
#include <ql/models/marketmodels/browniangenerator.hpp>
#include <ql/models/marketmodels/driftcomputation/lmmdriftcalculator.hpp>
#include <ql/models/marketmodels/evolvers/marketmodelvolprocess.hpp>
namespace QuantLib {
SVDDFwdRatePc::SVDDFwdRatePc(const boost::shared_ptr<MarketModel>& marketModel,
const BrownianGeneratorFactory& factory,
const boost::shared_ptr<MarketModelVolProcess>& volProcess,
Size firstVolatilityFactor,
Size volatilityFactorStep,
const std::vector<Size>& numeraires,
Size initialStep )
: marketModel_(marketModel),
volProcess_(volProcess),
firstVolatilityFactor_(firstVolatilityFactor),
volatilityFactorStep_(volatilityFactorStep),
volFactorsPerStep_(volProcess->variatesPerStep()),
numeraires_(numeraires),
initialStep_(initialStep),
isVolVariate_(false,volProcess->variatesPerStep()+marketModel_->numberOfFactors()),
numberOfRates_(marketModel->numberOfRates()),
numberOfFactors_(marketModel_->numberOfFactors()),
curveState_(marketModel->evolution().rateTimes()),
forwards_(marketModel->initialRates()),
displacements_(marketModel->displacements()),
logForwards_(numberOfRates_), initialLogForwards_(numberOfRates_),
drifts1_(numberOfRates_), drifts2_(numberOfRates_),
initialDrifts_(numberOfRates_), allBrownians_(volProcess->variatesPerStep()+marketModel_->numberOfFactors()),
brownians_(numberOfFactors_),
volBrownians_(volProcess->variatesPerStep()),
correlatedBrownians_(numberOfRates_),
alive_(marketModel->evolution().firstAliveRate())
{
QL_REQUIRE(initialStep ==0, "initial step zero only supported currently. ");
checkCompatibility(marketModel->evolution(), numeraires);
Size steps = marketModel->evolution().numberOfSteps();
generator_ = factory.create(numberOfFactors_+volFactorsPerStep_, steps-initialStep_);
currentStep_ = initialStep_;
calculators_.reserve(steps);
fixedDrifts_.reserve(steps);
for (Size j=0; j<steps; ++j)
{
const Matrix& A = marketModel_->pseudoRoot(j);
calculators_.push_back(
LMMDriftCalculator(A,
displacements_,
marketModel->evolution().rateTaus(),
numeraires[j],
alive_[j]));
std::vector<Real> fixed(numberOfRates_);
for (Size k=0; k<numberOfRates_; ++k)
{
Real variance =
std::inner_product(A.row_begin(k), A.row_end(k),
A.row_begin(k), 0.0);
fixed[k] = -0.5*variance;
}
fixedDrifts_.push_back(fixed);
}
setForwards(marketModel_->initialRates());
Size variatesPerStep = numberOfFactors_+volFactorsPerStep_;
firstVolatilityFactor_ = std::min(firstVolatilityFactor_,variatesPerStep - volFactorsPerStep_);
Size volIncrement = (variatesPerStep - firstVolatilityFactor_)/volFactorsPerStep_;
for (Size i=0; i < volFactorsPerStep_; ++i)
isVolVariate_[firstVolatilityFactor_+i*volIncrement] = true;
}
const std::vector<Size>& SVDDFwdRatePc::numeraires() const {
return numeraires_;
}
void SVDDFwdRatePc::setForwards(const std::vector<Real>& forwards)
{
QL_REQUIRE(forwards.size()==numberOfRates_,
"mismatch between forwards and rateTimes");
for (Size i=0; i<numberOfRates_; ++i)
initialLogForwards_[i] = std::log(forwards[i] +
displacements_[i]);
calculators_[initialStep_].compute(forwards, initialDrifts_);
}
void SVDDFwdRatePc::setInitialState(const CurveState& cs)
{
setForwards(cs.forwardRates());
}
Real SVDDFwdRatePc::startNewPath()
{
currentStep_ = initialStep_;
std::copy(initialLogForwards_.begin(), initialLogForwards_.end(),
logForwards_.begin());
volProcess_->nextPath();
return generator_->nextPath();
}
Real SVDDFwdRatePc::advanceStep()
{
// we're going from T1 to T2
// a) compute drifts D1 at T1;
if (currentStep_ > initialStep_)
{
calculators_[currentStep_].compute(forwards_, drifts1_);
}
else
{
std::copy(initialDrifts_.begin(), initialDrifts_.end(),
drifts1_.begin());
}
// b) evolve forwards up to T2 using D1;
Real weight = generator_->nextStep(allBrownians_);
// divide Brownians between vol process and forward process
for (Size i=0, j=0, k=0; i < allBrownians_.size(); ++i)
if ( isVolVariate_[i])
{
volBrownians_[j] = allBrownians_[i];
++j;
}
else
{
brownians_[k] = allBrownians_[i];
++k;
}
// get sd for step
Real weight2 = volProcess_->nextstep(volBrownians_);
Real sdMultiplier = volProcess_->stepSd();
Real varianceMultiplier = sdMultiplier*sdMultiplier;
const Matrix& A = marketModel_->pseudoRoot(currentStep_);
const std::vector<Real>& fixedDrift = fixedDrifts_[currentStep_];
Size alive = alive_[currentStep_];
for (Size i=alive; i<numberOfRates_; ++i) {
logForwards_[i] += varianceMultiplier*(drifts1_[i] + fixedDrift[i]);
logForwards_[i] += sdMultiplier*
std::inner_product(A.row_begin(i), A.row_end(i),
brownians_.begin(), 0.0);
forwards_[i] = std::exp(logForwards_[i]) - displacements_[i];
}
// c) recompute drifts D2 using the predicted forwards;
calculators_[currentStep_].compute(forwards_, drifts2_);
// d) correct forwards using both drifts
for (Size i=alive; i<numberOfRates_; ++i) {
logForwards_[i] += varianceMultiplier*(drifts2_[i]-drifts1_[i])/2.0;
forwards_[i] = std::exp(logForwards_[i]) - displacements_[i];
}
// e) update curve state
curveState_.setOnForwardRates(forwards_);
++currentStep_;
return weight*weight2;
}
Size SVDDFwdRatePc::currentStep() const {
return currentStep_;
}
const CurveState& SVDDFwdRatePc::currentState() const {
return curveState_;
}
}
|