1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2007 Mark Joshi
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/models/marketmodels/forwardforwardmappings.hpp>
#include <ql/models/marketmodels/curvestate.hpp>
#include <ql/models/marketmodels/curvestates/lmmcurvestate.hpp>
#include <vector>
namespace QuantLib {
Disposable<Matrix>
ForwardForwardMappings::ForwardForwardJacobian(const CurveState& cs,
Size multiplier,
Size offset)
{
Size n = cs.numberOfRates();
QL_REQUIRE(offset < multiplier, "offset must be less than period in"
" forward forward mappings");
Size k = (n-offset)/multiplier;
const std::vector<Time>& tau = cs.rateTaus();
Matrix jacobian = Matrix(k, n, 0.0);
Size m=offset;
for (Size l=0; l < k; ++l)
{
Real df = cs.discountRatio(m,m+multiplier);
Real bigTau = cs.rateTimes()[m+multiplier]
- cs.rateTimes()[m];
for (Size r=0; r < multiplier; ++r, ++m)
{
Real value = df * tau[m]*cs.discountRatio(m+1,m)-1;
value /= bigTau;
jacobian[l][m]=-value;
}
}
return jacobian;
}
Disposable<Matrix>
ForwardForwardMappings::YMatrix(const CurveState& cs,
const std::vector<Spread>& shortDisplacements,
const std::vector<Spread>& longDisplacements,
Size multiplier,
Size offset
)
{
Size n = cs.numberOfRates();
QL_REQUIRE(offset < multiplier, "offset must be less than period in"
" forward forward mappings");
Size k = (n-offset)/multiplier;
QL_REQUIRE(shortDisplacements.size() == n , "shortDisplacements must be of size"
" equal to number of rates");
QL_REQUIRE(longDisplacements.size() == k , "longDisplacements must be of size"
" equal to (number of rates minus offset) divided by multiplier");
Matrix jacobian(ForwardForwardJacobian(cs,multiplier,offset));
for (Size i=0; i < k ; ++i)
{
Real tau = cs.rateTimes()[(i+1)*multiplier+offset]
- cs.rateTimes()[i*multiplier+offset];
Real longForward = (cs.discountRatio((i+1)*multiplier+offset,i*multiplier+offset)-1.0)
/tau;
Real longForwardDisplaced = longForward+ longDisplacements[i];
for (Size j=0; j < n; ++j)
{
Real shortForward = cs.forwardRate(j);
Real shortForwardDisplaced = shortForward+shortDisplacements[j];
jacobian[i][j] *= shortForwardDisplaced/longForwardDisplaced;
}
}
return jacobian;
}
LMMCurveState
ForwardForwardMappings::RestrictCurveState(const CurveState& cs,
Size multiplier,
Size offset
)
{
Size n = cs.numberOfRates();
QL_REQUIRE(offset < multiplier, "offset must be less than period in"
" forward forward mappings");
Size k = (n-offset)/multiplier;
std::vector<Time> times(k+1);
std::vector<DiscountFactor> discRatios(k+1);
for (Size i=0; i < k+1; ++i)
{
times[i] = cs.rateTimes()[i*multiplier+offset];
discRatios[i] = cs.discountRatio(i*multiplier+offset,0);
}
LMMCurveState newState(times);
newState.setOnDiscountRatios(discRatios);
return newState;
}
}
|