File: fdblackscholesasianengine.cpp

package info (click to toggle)
quantlib 1.2-2
  • links: PTS
  • area: main
  • in suites: wheezy
  • size: 30,760 kB
  • sloc: cpp: 232,809; ansic: 21,483; sh: 11,108; makefile: 4,717; lisp: 86
file content (120 lines) | stat: -rw-r--r-- 5,606 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2009 Ralph Schreyer

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

#include <ql/exercise.hpp>
#include <ql/processes/blackscholesprocess.hpp>
#include <ql/methods/finitedifferences/stepconditions/fdmarithmeticaveragecondition.hpp>
#include <ql/pricingengines/asian/fdblackscholesasianengine.hpp>
#include <ql/methods/finitedifferences/solvers/fdmsimple2dbssolver.hpp>
#include <ql/methods/finitedifferences/utilities/fdminnervaluecalculator.hpp>
#include <ql/methods/finitedifferences/operators/fdmlinearoplayout.hpp>
#include <ql/methods/finitedifferences/meshers/fdmblackscholesmesher.hpp>
#include <ql/methods/finitedifferences/meshers/fdmmeshercomposite.hpp>
#include <ql/methods/finitedifferences/stepconditions/fdmstepconditioncomposite.hpp>

namespace QuantLib {


    FdBlackScholesAsianEngine::FdBlackScholesAsianEngine(
            const boost::shared_ptr<GeneralizedBlackScholesProcess>& process,
            Size tGrid, Size xGrid, Size aGrid, 
            const FdmSchemeDesc& schemeDesc)
    : GenericEngine<DiscreteAveragingAsianOption::arguments,
                    DiscreteAveragingAsianOption::results>(),
      process_(process), tGrid_(tGrid), xGrid_(xGrid), aGrid_(aGrid),
      schemeDesc_(schemeDesc) {}


    void FdBlackScholesAsianEngine::calculate() const {

        QL_REQUIRE(arguments_.exercise->type() == Exercise::European,
                   "European exercise supported only");
        QL_REQUIRE(arguments_.averageType == Average::Arithmetic,
                   "Arithmetic averaging supported only");
        QL_REQUIRE(   arguments_.runningAccumulator == 0
                   || arguments_.pastFixings > 0,
                   "Running average requires at least one past fixing");

        // 1. Layout
        std::vector<Size> dim;
        dim.push_back(xGrid_);
        dim.push_back(aGrid_);
        const boost::shared_ptr<FdmLinearOpLayout> layout(
                                              new FdmLinearOpLayout(dim));

        // 2. Mesher
        const boost::shared_ptr<StrikedTypePayoff> payoff =
            boost::dynamic_pointer_cast<StrikedTypePayoff>(arguments_.payoff);
        const Time maturity = process_->time(arguments_.exercise->lastDate());
        const boost::shared_ptr<Fdm1dMesher> equityMesher(
            new FdmBlackScholesMesher(xGrid_, process_, maturity,
                                      payoff->strike()));
        const boost::shared_ptr<Fdm1dMesher> averageMesher(
            new FdmBlackScholesMesher(aGrid_, process_, maturity,
                                      payoff->strike()));

        std::vector<boost::shared_ptr<Fdm1dMesher> > meshers;
        meshers.push_back(equityMesher);
        meshers.push_back(averageMesher);
        boost::shared_ptr<FdmMesher> mesher (
                                     new FdmMesherComposite(layout, meshers));

        // 3. Calculator
        boost::shared_ptr<FdmInnerValueCalculator> calculator(
                                new FdmLogInnerValue(payoff, mesher, 1));

        // 4. Step conditions
        std::list<boost::shared_ptr<StepCondition<Array> > > stepConditions;
        std::list<std::vector<Time> > stoppingTimes;

        // 4.1 Arithmetic average step conditions
        std::vector<Time> averageTimes;
        for (Size i=0; i<arguments_.fixingDates.size(); ++i) {
            Time t = process_->time(arguments_.fixingDates[i]);
            QL_REQUIRE(t >= 0, "Fixing dates must not contain past date");
            averageTimes.push_back(t);
        }
        stoppingTimes.push_back(std::vector<Time>(averageTimes));
        stepConditions.push_back(boost::shared_ptr<StepCondition<Array> >(
                new FdmArithmeticAverageCondition(
                        averageTimes, arguments_.runningAccumulator,
                        arguments_.pastFixings, mesher, 0)));

        boost::shared_ptr<FdmStepConditionComposite> conditions(
                new FdmStepConditionComposite(stoppingTimes, stepConditions));

        // 5. Boundary conditions
        std::vector<boost::shared_ptr<FdmDirichletBoundary> > boundaries;

        // 6. Solver
        FdmSolverDesc solverDesc = { mesher, boundaries, conditions,
                                     calculator, maturity, tGrid_, 0 };
        boost::shared_ptr<FdmSimple2dBSSolver> solver(
              new FdmSimple2dBSSolver(
                              Handle<GeneralizedBlackScholesProcess>(process_),
                              payoff->strike(), solverDesc, schemeDesc_));

        const Real spot = process_->x0();
        const Real avg = arguments_.runningAccumulator == 0
                 ? spot : arguments_.runningAccumulator/arguments_.pastFixings;
        results_.value = solver->valueAt(spot, avg);
        results_.delta = solver->deltaAt(spot, avg, spot*0.01);
        results_.gamma = solver->gammaAt(spot, avg, spot*0.01);
    }
}