File: fdblackscholesrebateengine.cpp

package info (click to toggle)
quantlib 1.2-2
  • links: PTS
  • area: main
  • in suites: wheezy
  • size: 30,760 kB
  • sloc: cpp: 232,809; ansic: 21,483; sh: 11,108; makefile: 4,717; lisp: 86
file content (125 lines) | stat: -rw-r--r-- 5,796 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2008 Andreas Gaida
 Copyright (C) 2008, 2009 Ralph Schreyer
 Copyright (C) 2008 Klaus Spanderen

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

#include <ql/exercise.hpp>
#include <ql/pricingengines/barrier/fdblackscholesrebateengine.hpp>
#include <ql/methods/finitedifferences/solvers/fdmblackscholessolver.hpp>
#include <ql/methods/finitedifferences/utilities/fdminnervaluecalculator.hpp>
#include <ql/methods/finitedifferences/operators/fdmlinearoplayout.hpp>
#include <ql/methods/finitedifferences/meshers/fdmmeshercomposite.hpp>
#include <ql/methods/finitedifferences/stepconditions/fdmstepconditioncomposite.hpp>
#include <ql/methods/finitedifferences/meshers/fdmblackscholesmesher.hpp>

namespace QuantLib {

    FdBlackScholesRebateEngine::FdBlackScholesRebateEngine(
            const boost::shared_ptr<GeneralizedBlackScholesProcess>& process,
            Size tGrid, Size xGrid, Size dampingSteps, 
            const FdmSchemeDesc& schemeDesc,
            bool localVol, Real illegalLocalVolOverwrite)
    : GenericEngine<DividendBarrierOption::arguments,
                    DividendBarrierOption::results>(),
      process_(process), tGrid_(tGrid), xGrid_(xGrid), 
      dampingSteps_(dampingSteps), 
      schemeDesc_(schemeDesc),
      localVol_(localVol), illegalLocalVolOverwrite_(illegalLocalVolOverwrite){
    }

    void FdBlackScholesRebateEngine::calculate() const {

        // 1. Layout
        std::vector<Size> dim(1, xGrid_);
        boost::shared_ptr<FdmLinearOpLayout> layout(new FdmLinearOpLayout(dim));

        // 2. Mesher
        const boost::shared_ptr<StrikedTypePayoff> payoff =
            boost::dynamic_pointer_cast<StrikedTypePayoff>(arguments_.payoff);
        const Time maturity = process_->time(arguments_.exercise->lastDate());

        Real xMin=Null<Real>();
        Real xMax=Null<Real>();
        if (   arguments_.barrierType == Barrier::DownIn
            || arguments_.barrierType == Barrier::DownOut) {
            xMin = std::log(arguments_.barrier);
        }
        if (   arguments_.barrierType == Barrier::UpIn
            || arguments_.barrierType == Barrier::UpOut) {
            xMax = std::log(arguments_.barrier);
        }

        const boost::shared_ptr<Fdm1dMesher> equityMesher(
            new FdmBlackScholesMesher(xGrid_, process_, maturity,
                                      payoff->strike(), xMin, xMax));
        
        std::vector<boost::shared_ptr<Fdm1dMesher> > meshers(1, equityMesher);
        const boost::shared_ptr<FdmMesher> mesher (
                                     new FdmMesherComposite(layout, meshers));
        
        // 3. Calculator
        const boost::shared_ptr<StrikedTypePayoff> rebatePayoff(
                new CashOrNothingPayoff(Option::Call, 0.0, arguments_.rebate));
        const boost::shared_ptr<FdmInnerValueCalculator> calculator(
                                new FdmLogInnerValue(rebatePayoff, mesher, 0));

        // 4. Step conditions
        QL_REQUIRE(arguments_.exercise->type() == Exercise::European,
                   "only european style option are supported");
        
        const boost::shared_ptr<FdmStepConditionComposite> conditions =
            FdmStepConditionComposite::vanillaComposite(
                                arguments_.cashFlow, arguments_.exercise, 
                                mesher, calculator, 
                                process_->riskFreeRate()->referenceDate(),
                                process_->riskFreeRate()->dayCounter());

        // 5. Boundary conditions
        std::vector<boost::shared_ptr<FdmDirichletBoundary> > boundaries;
        if (   arguments_.barrierType == Barrier::DownIn
            || arguments_.barrierType == Barrier::DownOut) {
            boundaries.push_back(boost::shared_ptr<FdmDirichletBoundary>(
                new FdmDirichletBoundary(mesher, arguments_.rebate, 0,
                                         FdmDirichletBoundary::Lower)));

        }
        if (   arguments_.barrierType == Barrier::UpIn
            || arguments_.barrierType == Barrier::UpOut) {
            boundaries.push_back(boost::shared_ptr<FdmDirichletBoundary>(
                new FdmDirichletBoundary(mesher, arguments_.rebate, 0,
                                         FdmDirichletBoundary::Upper)));
        }

        // 6. Solver
        FdmSolverDesc solverDesc = { mesher, boundaries, conditions, calculator,
                                     maturity, tGrid_, dampingSteps_ };

        const boost::shared_ptr<FdmBlackScholesSolver> solver(
                new FdmBlackScholesSolver(
                                Handle<GeneralizedBlackScholesProcess>(process_),
                                payoff->strike(), solverDesc, schemeDesc_,
                                localVol_, illegalLocalVolOverwrite_));

        const Real spot = process_->x0();
        results_.value = solver->valueAt(spot);
        results_.delta = solver->deltaAt(spot);
        results_.gamma = solver->gammaAt(spot);
        results_.theta = solver->thetaAt(spot);
    }
}