1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2008 Andreas Gaida
Copyright (C) 2008, 2009 Ralph Schreyer
Copyright (C) 2008, 2009 Klaus Spanderen
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/pricingengines/barrier/fdhestonrebateengine.hpp>
#include <ql/methods/finitedifferences/stepconditions/fdmstepconditioncomposite.hpp>
#include <ql/methods/finitedifferences/solvers/fdmbackwardsolver.hpp>
#include <ql/methods/finitedifferences/meshers/fdmhestonvariancemesher.hpp>
#include <ql/methods/finitedifferences/utilities/fdminnervaluecalculator.hpp>
#include <ql/methods/finitedifferences/operators/fdmlinearoplayout.hpp>
#include <ql/methods/finitedifferences/meshers/fdmmeshercomposite.hpp>
#include <ql/methods/finitedifferences/meshers/fdmblackscholesmesher.hpp>
namespace QuantLib {
FdHestonRebateEngine::FdHestonRebateEngine(
const boost::shared_ptr<HestonModel>& model,
Size tGrid, Size xGrid, Size vGrid, Size dampingSteps,
const FdmSchemeDesc& schemeDesc)
: GenericModelEngine<HestonModel,
DividendBarrierOption::arguments,
DividendBarrierOption::results>(model),
tGrid_(tGrid), xGrid_(xGrid), vGrid_(vGrid),
dampingSteps_(dampingSteps),
schemeDesc_(schemeDesc) {
}
void FdHestonRebateEngine::calculate() const {
// 1. Layout
std::vector<Size> dim;
dim.push_back(xGrid_);
dim.push_back(vGrid_);
boost::shared_ptr<FdmLinearOpLayout> layout(new FdmLinearOpLayout(dim));
// 2. Mesher
const boost::shared_ptr<HestonProcess>& process = model_->process();
const Time maturity = process->time(arguments_.exercise->lastDate());
// 2.1 The variance mesher
const Size tGridMin = 5;
const boost::shared_ptr<FdmHestonVarianceMesher> varianceMesher(
new FdmHestonVarianceMesher(layout->dim()[1], process, maturity,
std::max(tGridMin, tGrid_/50)));
// 2.2 The equity mesher
const boost::shared_ptr<StrikedTypePayoff> payoff =
boost::dynamic_pointer_cast<StrikedTypePayoff>(arguments_.payoff);
Real xMin=Null<Real>();
Real xMax=Null<Real>();
if ( arguments_.barrierType == Barrier::DownIn
|| arguments_.barrierType == Barrier::DownOut) {
xMin = std::log(arguments_.barrier);
}
if ( arguments_.barrierType == Barrier::UpIn
|| arguments_.barrierType == Barrier::UpOut) {
xMax = std::log(arguments_.barrier);
}
const boost::shared_ptr<Fdm1dMesher> equityMesher(
new FdmBlackScholesMesher(
xGrid_,
FdmBlackScholesMesher::processHelper(
process->s0(), process->dividendYield(),
process->riskFreeRate(), varianceMesher->volaEstimate()),
maturity, payoff->strike(), xMin, xMax));
std::vector<boost::shared_ptr<Fdm1dMesher> > meshers;
meshers.push_back(equityMesher);
meshers.push_back(varianceMesher);
const boost::shared_ptr<FdmMesher> mesher (
new FdmMesherComposite(layout, meshers));
// 3. Calculator
const boost::shared_ptr<StrikedTypePayoff> rebatePayoff(
new CashOrNothingPayoff(Option::Call, 0.0, arguments_.rebate));
const boost::shared_ptr<FdmInnerValueCalculator> calculator(
new FdmLogInnerValue(rebatePayoff, mesher, 0));
// 4. Step conditions
QL_REQUIRE(arguments_.exercise->type() == Exercise::European,
"only european style option are supported");
const boost::shared_ptr<FdmStepConditionComposite> conditions =
FdmStepConditionComposite::vanillaComposite(
arguments_.cashFlow, arguments_.exercise,
mesher, calculator,
process->riskFreeRate()->referenceDate(),
process->riskFreeRate()->dayCounter());
// 5. Boundary conditions
std::vector<boost::shared_ptr<FdmDirichletBoundary> > boundaries;
if ( arguments_.barrierType == Barrier::DownIn
|| arguments_.barrierType == Barrier::DownOut) {
boundaries.push_back(boost::shared_ptr<FdmDirichletBoundary>(
new FdmDirichletBoundary(mesher, arguments_.rebate, 0,
FdmDirichletBoundary::Lower)));
}
if ( arguments_.barrierType == Barrier::UpIn
|| arguments_.barrierType == Barrier::UpOut) {
boundaries.push_back(boost::shared_ptr<FdmDirichletBoundary>(
new FdmDirichletBoundary(mesher, arguments_.rebate, 0,
FdmDirichletBoundary::Upper)));
}
// 6. Solver
FdmSolverDesc solverDesc = { mesher, boundaries, conditions,
calculator, maturity,
tGrid_, dampingSteps_ };
boost::shared_ptr<FdmHestonSolver> solver(new FdmHestonSolver(
Handle<HestonProcess>(process), solverDesc, schemeDesc_));
const Real spot = process->s0()->value();
results_.value = solver->valueAt(spot, process->v0());
results_.delta = solver->deltaAt(spot, process->v0());
results_.gamma = solver->gammaAt(spot, process->v0());
results_.theta = solver->thetaAt(spot, process->v0());
}
}
|