File: fdhestonrebateengine.cpp

package info (click to toggle)
quantlib 1.2-2
  • links: PTS
  • area: main
  • in suites: wheezy
  • size: 30,760 kB
  • sloc: cpp: 232,809; ansic: 21,483; sh: 11,108; makefile: 4,717; lisp: 86
file content (139 lines) | stat: -rw-r--r-- 6,329 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2008 Andreas Gaida
 Copyright (C) 2008, 2009 Ralph Schreyer
 Copyright (C) 2008, 2009 Klaus Spanderen

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

#include <ql/pricingengines/barrier/fdhestonrebateengine.hpp>
#include <ql/methods/finitedifferences/stepconditions/fdmstepconditioncomposite.hpp>
#include <ql/methods/finitedifferences/solvers/fdmbackwardsolver.hpp>
#include <ql/methods/finitedifferences/meshers/fdmhestonvariancemesher.hpp>
#include <ql/methods/finitedifferences/utilities/fdminnervaluecalculator.hpp>
#include <ql/methods/finitedifferences/operators/fdmlinearoplayout.hpp>
#include <ql/methods/finitedifferences/meshers/fdmmeshercomposite.hpp>
#include <ql/methods/finitedifferences/meshers/fdmblackscholesmesher.hpp>

namespace QuantLib {

    FdHestonRebateEngine::FdHestonRebateEngine(
            const boost::shared_ptr<HestonModel>& model,
            Size tGrid, Size xGrid, Size vGrid, Size dampingSteps,
            const FdmSchemeDesc& schemeDesc)
    : GenericModelEngine<HestonModel,
                        DividendBarrierOption::arguments,
                        DividendBarrierOption::results>(model),
      tGrid_(tGrid), xGrid_(xGrid), vGrid_(vGrid), 
      dampingSteps_(dampingSteps),
      schemeDesc_(schemeDesc) {
    }

    void FdHestonRebateEngine::calculate() const {

        // 1. Layout
        std::vector<Size> dim;
        dim.push_back(xGrid_);
        dim.push_back(vGrid_);
        boost::shared_ptr<FdmLinearOpLayout> layout(new FdmLinearOpLayout(dim));

        // 2. Mesher
        const boost::shared_ptr<HestonProcess>& process = model_->process();
        const Time maturity = process->time(arguments_.exercise->lastDate());

        // 2.1 The variance mesher
        const Size tGridMin = 5;
        const boost::shared_ptr<FdmHestonVarianceMesher> varianceMesher(
            new FdmHestonVarianceMesher(layout->dim()[1], process, maturity,
                                        std::max(tGridMin, tGrid_/50)));

        // 2.2 The equity mesher
        const boost::shared_ptr<StrikedTypePayoff> payoff =
            boost::dynamic_pointer_cast<StrikedTypePayoff>(arguments_.payoff);

        Real xMin=Null<Real>();
        Real xMax=Null<Real>();
        if (   arguments_.barrierType == Barrier::DownIn
            || arguments_.barrierType == Barrier::DownOut) {
            xMin = std::log(arguments_.barrier);
        }
        if (   arguments_.barrierType == Barrier::UpIn
            || arguments_.barrierType == Barrier::UpOut) {
            xMax = std::log(arguments_.barrier);
        }

        const boost::shared_ptr<Fdm1dMesher> equityMesher(
            new FdmBlackScholesMesher(
                xGrid_,
                FdmBlackScholesMesher::processHelper(
                    process->s0(), process->dividendYield(), 
                    process->riskFreeRate(), varianceMesher->volaEstimate()),
                maturity, payoff->strike(), xMin, xMax));
        
        std::vector<boost::shared_ptr<Fdm1dMesher> > meshers;
        meshers.push_back(equityMesher);
        meshers.push_back(varianceMesher);
        const boost::shared_ptr<FdmMesher> mesher (
                                     new FdmMesherComposite(layout, meshers));

        // 3. Calculator
        const boost::shared_ptr<StrikedTypePayoff> rebatePayoff(
                new CashOrNothingPayoff(Option::Call, 0.0, arguments_.rebate));
        const boost::shared_ptr<FdmInnerValueCalculator> calculator(
                                new FdmLogInnerValue(rebatePayoff, mesher, 0));

        // 4. Step conditions
        QL_REQUIRE(arguments_.exercise->type() == Exercise::European,
                   "only european style option are supported");

        const boost::shared_ptr<FdmStepConditionComposite> conditions = 
             FdmStepConditionComposite::vanillaComposite(
                                 arguments_.cashFlow, arguments_.exercise, 
                                 mesher, calculator, 
                                 process->riskFreeRate()->referenceDate(),
                                 process->riskFreeRate()->dayCounter());

        // 5. Boundary conditions
        std::vector<boost::shared_ptr<FdmDirichletBoundary> > boundaries;
        if (   arguments_.barrierType == Barrier::DownIn
            || arguments_.barrierType == Barrier::DownOut) {
            boundaries.push_back(boost::shared_ptr<FdmDirichletBoundary>(
                new FdmDirichletBoundary(mesher, arguments_.rebate, 0,
                                         FdmDirichletBoundary::Lower)));

        }
        if (   arguments_.barrierType == Barrier::UpIn
            || arguments_.barrierType == Barrier::UpOut) {
            boundaries.push_back(boost::shared_ptr<FdmDirichletBoundary>(
                new FdmDirichletBoundary(mesher, arguments_.rebate, 0,
                                         FdmDirichletBoundary::Upper)));
        }

        // 6. Solver
        FdmSolverDesc solverDesc = { mesher, boundaries, conditions,
                                     calculator, maturity,
                                     tGrid_, dampingSteps_ };

        boost::shared_ptr<FdmHestonSolver> solver(new FdmHestonSolver(
                    Handle<HestonProcess>(process), solverDesc, schemeDesc_));

        const Real spot = process->s0()->value();
        results_.value = solver->valueAt(spot, process->v0());
        results_.delta = solver->deltaAt(spot, process->v0());
        results_.gamma = solver->gammaAt(spot, process->v0());
        results_.theta = solver->thetaAt(spot, process->v0());
    }
}