File: mchullwhiteengine.hpp

package info (click to toggle)
quantlib 1.2-2
  • links: PTS
  • area: main
  • in suites: wheezy
  • size: 30,760 kB
  • sloc: cpp: 232,809; ansic: 21,483; sh: 11,108; makefile: 4,717; lisp: 86
file content (252 lines) | stat: -rw-r--r-- 9,965 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2006 Banca Profilo S.p.A.
 Copyright (C) 2006 StatPro Italia srl

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file mchullwhiteengine.hpp
    \brief Monte Carlo Hull-White engine for cap/floors
*/

#ifndef quantlib_mc_hull_white_cap_floor_engine_hpp
#define quantlib_mc_hull_white_cap_floor_engine_hpp

#include <ql/instruments/capfloor.hpp>
#include <ql/pricingengines/mcsimulation.hpp>
#include <ql/processes/hullwhiteprocess.hpp>
#include <ql/models/shortrate/onefactormodels/hullwhite.hpp>

namespace QuantLib {

    namespace detail {

        class HullWhiteCapFloorPricer : public PathPricer<Path> {
          public:
            HullWhiteCapFloorPricer(const CapFloor::arguments&,
                                    const boost::shared_ptr<HullWhite>&,
                                    Time forwardMeasureTime);
            Real operator()(const Path& path) const;
          private:
            CapFloor::arguments args_;
            boost::shared_ptr<HullWhite> model_;
            Time forwardMeasureTime_;
            DiscountFactor endDiscount_;
            std::vector<Time> startTimes_, endTimes_, fixingTimes_;
        };

    }


    //! Monte Carlo Hull-White engine for cap/floors
    /*! \ingroup capfloorengines */
    template <class RNG = PseudoRandom, class S = Statistics>
    class MCHullWhiteCapFloorEngine
        : public CapFloor::engine,
          public McSimulation<SingleVariate,RNG,S> {
      private:
        typedef McSimulation<SingleVariate,RNG,S> simulation;
        boost::shared_ptr<HullWhite> model_;
        Size requiredSamples_, maxSamples_;
        Real requiredTolerance_;
        bool brownianBridge_;
        BigNatural seed_;
      public:
        typedef typename simulation::path_generator_type path_generator_type;
        typedef typename simulation::path_pricer_type path_pricer_type;
        typedef typename simulation::stats_type stats_type;

        MCHullWhiteCapFloorEngine(const boost::shared_ptr<HullWhite>& model,
                                  bool brownianBridge,
                                  bool antitheticVariate,
                                  Size requiredSamples,
                                  Real requiredTolerance,
                                  Size maxSamples,
                                  BigNatural seed)
        : McSimulation<SingleVariate,RNG,S>(antitheticVariate, false),
          model_(model), requiredSamples_(requiredSamples),
          maxSamples_(maxSamples), requiredTolerance_(requiredTolerance),
          brownianBridge_(brownianBridge), seed_(seed) {
            registerWith(model_);
        }

        void calculate() const {
            simulation::calculate(requiredTolerance_,
                                  requiredSamples_,
                                  maxSamples_);
            results_.value = this->mcModel_->sampleAccumulator().mean();
            if (RNG::allowsErrorEstimate)
                results_.errorEstimate =
                    this->mcModel_->sampleAccumulator().errorEstimate();
        }

      protected:
        boost::shared_ptr<path_pricer_type> pathPricer() const {
            Date referenceDate = model_->termStructure()->referenceDate();
            DayCounter dayCounter = model_->termStructure()->dayCounter();
            Time forwardMeasureTime =
                dayCounter.yearFraction(referenceDate,
                                        arguments_.endDates.back());
            return boost::shared_ptr<path_pricer_type>(
                     new detail::HullWhiteCapFloorPricer(arguments_, model_,
                                                         forwardMeasureTime));
        }

        TimeGrid timeGrid() const {

            Date referenceDate = model_->termStructure()->referenceDate();
            DayCounter dayCounter = model_->termStructure()->dayCounter();

            // only add future fixing times...
            std::vector<Time> times;
            for (Size i=0; i<arguments_.fixingDates.size(); i++) {
                if (arguments_.fixingDates[i] > referenceDate)
                    times.push_back(
                          dayCounter.yearFraction(referenceDate,
                                                  arguments_.fixingDates[i]));
            }
            // ...and maturity.
            times.push_back(
                        dayCounter.yearFraction(referenceDate,
                                                arguments_.endDates.back()));
            return TimeGrid(times.begin(), times.end());
        }

        boost::shared_ptr<path_generator_type> pathGenerator() const {

            Handle<YieldTermStructure> curve = model_->termStructure();
            Date referenceDate = curve->referenceDate();
            DayCounter dayCounter = curve->dayCounter();

            Time forwardMeasureTime =
                dayCounter.yearFraction(referenceDate,
                                        arguments_.endDates.back());
            Array parameters = model_->params();
            Real a = parameters[0], sigma = parameters[1];
            boost::shared_ptr<HullWhiteForwardProcess> process(
                                new HullWhiteForwardProcess(curve, a, sigma));
            process->setForwardMeasureTime(forwardMeasureTime);

            TimeGrid grid = this->timeGrid();
            typename RNG::rsg_type generator =
                RNG::make_sequence_generator(grid.size()-1,seed_);
            return boost::shared_ptr<path_generator_type>(
                             new path_generator_type(process, grid, generator,
                                                     brownianBridge_));
        }
    };



    //! Monte Carlo Hull-White cap-floor engine factory
    template <class RNG = PseudoRandom, class S = Statistics>
    class MakeMCHullWhiteCapFloorEngine {
      public:
        MakeMCHullWhiteCapFloorEngine(const boost::shared_ptr<HullWhite>&);
        // named parameters
        MakeMCHullWhiteCapFloorEngine& withBrownianBridge(bool b = true);
        MakeMCHullWhiteCapFloorEngine& withSamples(Size samples);
        MakeMCHullWhiteCapFloorEngine& withAbsoluteTolerance(Real tolerance);
        MakeMCHullWhiteCapFloorEngine& withMaxSamples(Size samples);
        MakeMCHullWhiteCapFloorEngine& withSeed(BigNatural seed);
        MakeMCHullWhiteCapFloorEngine& withAntitheticVariate(bool b = true);
        // conversion to pricing engine
        operator boost::shared_ptr<PricingEngine>() const;
      private:
        boost::shared_ptr<HullWhite> model_;
        bool antithetic_;
        Size samples_, maxSamples_;
        Real tolerance_;
        bool brownianBridge_;
        BigNatural seed_;
    };


    // inline definitions

    template <class RNG, class S>
    inline
    MakeMCHullWhiteCapFloorEngine<RNG,S>::MakeMCHullWhiteCapFloorEngine(
                                    const boost::shared_ptr<HullWhite>& model)
    : model_(model), antithetic_(false),
      samples_(Null<Size>()), maxSamples_(Null<Size>()),
      tolerance_(Null<Real>()), brownianBridge_(false), seed_(0) {}

    template <class RNG, class S>
    inline MakeMCHullWhiteCapFloorEngine<RNG,S>&
    MakeMCHullWhiteCapFloorEngine<RNG,S>::withSamples(Size samples) {
        QL_REQUIRE(tolerance_ == Null<Real>(),
                   "tolerance already set");
        samples_ = samples;
        return *this;
    }

    template <class RNG, class S>
    inline MakeMCHullWhiteCapFloorEngine<RNG,S>&
    MakeMCHullWhiteCapFloorEngine<RNG,S>::withAbsoluteTolerance(
                                                             Real tolerance) {
        QL_REQUIRE(samples_ == Null<Size>(),
                   "number of samples already set");
        QL_REQUIRE(RNG::allowsErrorEstimate,
                   "chosen random generator policy "
                   "does not allow an error estimate");
        tolerance_ = tolerance;
        return *this;
    }

    template <class RNG, class S>
    inline MakeMCHullWhiteCapFloorEngine<RNG,S>&
    MakeMCHullWhiteCapFloorEngine<RNG,S>::withMaxSamples(Size samples) {
        maxSamples_ = samples;
        return *this;
    }

    template <class RNG, class S>
    inline MakeMCHullWhiteCapFloorEngine<RNG,S>&
    MakeMCHullWhiteCapFloorEngine<RNG,S>::withSeed(BigNatural seed) {
        seed_ = seed;
        return *this;
    }

    template <class RNG, class S>
    inline MakeMCHullWhiteCapFloorEngine<RNG,S>&
    MakeMCHullWhiteCapFloorEngine<RNG,S>::withBrownianBridge(bool b) {
        brownianBridge_ = b;
        return *this;
    }

    template <class RNG, class S>
    inline MakeMCHullWhiteCapFloorEngine<RNG,S>&
    MakeMCHullWhiteCapFloorEngine<RNG,S>::withAntitheticVariate(bool b) {
        antithetic_ = b;
        return *this;
    }

    template <class RNG, class S>
    inline MakeMCHullWhiteCapFloorEngine<RNG,S>::
    operator boost::shared_ptr<PricingEngine>() const {
        return boost::shared_ptr<PricingEngine>(new
            MCHullWhiteCapFloorEngine<RNG,S>(model_,
                                             brownianBridge_, antithetic_,
                                             samples_, tolerance_,
                                             maxSamples_, seed_));
    }

}


#endif