1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2008 Roland Lichters
Copyright (C) 2008, 2009 StatPro Italia srl
Copyright (C) 2009 Jose Aparicio
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/pricingengines/credit/integralcdsengine.hpp>
#include <ql/instruments/claim.hpp>
#include <ql/termstructures/yieldtermstructure.hpp>
#include <ql/cashflows/fixedratecoupon.hpp>
namespace QuantLib {
IntegralCdsEngine::IntegralCdsEngine(
const Period& step,
const Handle<DefaultProbabilityTermStructure>& probability,
Real recoveryRate,
const Handle<YieldTermStructure>& discountCurve,
boost::optional<bool> includeSettlementDateFlows)
: integrationStep_(step), probability_(probability),
recoveryRate_(recoveryRate), discountCurve_(discountCurve),
includeSettlementDateFlows_(includeSettlementDateFlows) {
registerWith(probability_);
registerWith(discountCurve_);
}
void IntegralCdsEngine::calculate() const {
QL_REQUIRE(integrationStep_ != Period(),
"null period set");
QL_REQUIRE(!discountCurve_.empty(),
"no discount term structure set");
QL_REQUIRE(!probability_.empty(),
"no probability term structure set");
Date today = Settings::instance().evaluationDate();
Date settlementDate = discountCurve_->referenceDate();
// Upfront Flow NPV. Either we are on-the-run (no flow)
// or we are forward start
Real upfPVO1 = 0.0;
if(!arguments_.upfrontPayment->hasOccurred(
settlementDate,
includeSettlementDateFlows_)) {
// date determining the probability survival so we have to pay
// the upfront (did not knock out)
Date effectiveUpfrontDate =
arguments_.protectionStart > probability_->referenceDate() ?
arguments_.protectionStart : probability_->referenceDate();
upfPVO1 =
probability_->survivalProbability(effectiveUpfrontDate) *
discountCurve_->discount(arguments_.upfrontPayment->date());
}
results_.upfrontNPV = upfPVO1 * arguments_.upfrontPayment->amount();
results_.couponLegNPV = 0.0;
results_.defaultLegNPV = 0.0;
for (Size i=0; i<arguments_.leg.size(); ++i) {
if (arguments_.leg[i]->hasOccurred(settlementDate,
includeSettlementDateFlows_))
continue;
boost::shared_ptr<FixedRateCoupon> coupon =
boost::dynamic_pointer_cast<FixedRateCoupon>(arguments_.leg[i]);
// In order to avoid a few switches, we calculate the NPV
// of both legs as a positive quantity. We'll give them
// the right sign at the end.
Date paymentDate = coupon->date(),
startDate = (i == 0 ? arguments_.protectionStart :
coupon->accrualStartDate()),
endDate = coupon->accrualEndDate();
Date effectiveStartDate =
(startDate <= today && today <= endDate) ? today : startDate;
Real couponAmount = coupon->amount();
Probability S = probability_->survivalProbability(paymentDate);
// On one side, we add the fixed rate payments in case of
// survival.
results_.couponLegNPV +=
S * couponAmount * discountCurve_->discount(paymentDate);
// On the other side, we add the payment (and possibly the
// accrual) in case of default.
Period step = integrationStep_;
Date d0 = effectiveStartDate;
Date d1 = std::min(d0 + step, endDate);
Probability P0 = probability_->defaultProbability(d0);
DiscountFactor endDiscount = discountCurve_->discount(paymentDate);
do {
DiscountFactor B =
arguments_.paysAtDefaultTime ?
discountCurve_->discount(d1) :
endDiscount;
Probability P1 = probability_->defaultProbability(d1);
Probability dP = P1 - P0;
// accrual...
if (arguments_.settlesAccrual) {
if (arguments_.paysAtDefaultTime)
results_.couponLegNPV +=
coupon->accruedAmount(d1) * B * dP;
else
results_.couponLegNPV +=
couponAmount * B * dP;
}
// ...and claim.
Real claim = arguments_.claim->amount(d1,
arguments_.notional,
recoveryRate_);
results_.defaultLegNPV += claim * B * dP;
// setup for next time around the loop
P0 = P1;
d0 = d1;
d1 = std::min(d0 + step, endDate);
} while (d0 < endDate);
}
Real upfrontSign = 1.0;
switch (arguments_.side) {
case Protection::Seller:
results_.defaultLegNPV *= -1.0;
break;
case Protection::Buyer:
results_.couponLegNPV *= -1.0;
results_.upfrontNPV *= -1.0;
upfrontSign = -1.0;
break;
default:
QL_FAIL("unknown protection side");
}
results_.value =
results_.defaultLegNPV+results_.couponLegNPV+results_.upfrontNPV;
results_.errorEstimate = Null<Real>();
if (results_.couponLegNPV != 0.0) {
results_.fairSpread =
-results_.defaultLegNPV*arguments_.spread/results_.couponLegNPV;
} else {
results_.fairSpread = Null<Rate>();
}
Real upfrontSensitivity = upfPVO1 * arguments_.notional;
if (upfrontSensitivity != 0.0) {
results_.fairUpfront =
-upfrontSign*(results_.defaultLegNPV + results_.couponLegNPV)
/ upfrontSensitivity;
} else {
results_.fairUpfront = Null<Rate>();
}
static const Rate basisPoint = 1.0e-4;
if (arguments_.spread != 0.0) {
results_.couponLegBPS =
results_.couponLegNPV*basisPoint/arguments_.spread;
} else {
results_.couponLegBPS = Null<Rate>();
}
if (arguments_.upfront && *arguments_.upfront != 0.0) {
results_.upfrontBPS =
results_.upfrontNPV*basisPoint/(*arguments_.upfront);
} else {
results_.upfrontBPS = Null<Rate>();
}
}
}
|