1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2003 Ferdinando Ametrano
Copyright (C) 2007 StatPro Italia srl
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/pricingengines/vanilla/bjerksundstenslandengine.hpp>
#include <ql/pricingengines/blackcalculator.hpp>
#include <ql/math/distributions/normaldistribution.hpp>
#include <ql/exercise.hpp>
namespace QuantLib {
namespace {
CumulativeNormalDistribution cumNormalDist;
Real phi(Real S, Real gamma, Real H, Real I,
Real rT, Real bT, Real variance) {
Real lambda = (-rT + gamma * bT + 0.5 * gamma * (gamma - 1.0)
* variance);
Real d = -(std::log(S / H) + (bT + (gamma - 0.5) * variance) )
/ std::sqrt(variance);
Real kappa = 2.0 * bT / variance + (2.0 * gamma - 1.0);
return std::exp(lambda) * std::pow(S, gamma) * (cumNormalDist(d)
- std::pow((I / S), kappa) *
cumNormalDist(d - 2.0 * std::log(I/S) / std::sqrt(variance)));
}
Real americanCallApproximation(Real S, Real X,
Real rfD, Real dD, Real variance) {
Real bT = std::log(dD/rfD);
Real rT = std::log(1.0/rfD);
Real beta = (0.5 - bT/variance) +
std::sqrt(std::pow((bT/variance - 0.5), Real(2.0))
+ 2.0 * rT/variance);
Real BInfinity = beta / (beta - 1.0) * X;
// Real B0 = std::max(X, std::log(rfD) / std::log(dD) * X);
Real B0 = std::max(X, rT / (rT - bT) * X);
Real ht = -(bT + 2.0*std::sqrt(variance)) * B0 / (BInfinity - B0);
// investigate what happen to I for dD->0.0
Real I = B0 + (BInfinity - B0) * (1 - std::exp(ht));
QL_REQUIRE(I >= X,
"Bjerksund-Stensland approximation not applicable "
"to this set of parameters");
if (S >= I) {
return S - X;
} else {
// investigate what happen to alpha for dD->0.0
Real alpha = (I - X) * std::pow(I, (-beta));
return alpha * std::pow(S, beta)
- alpha * phi(S, beta, I, I, rT, bT, variance)
+ phi(S, 1.0, I, I, rT, bT, variance)
- phi(S, 1.0, X, I, rT, bT, variance)
- X * phi(S, 0.0, I, I, rT, bT, variance)
+ X * phi(S, 0.0, X, I, rT, bT, variance);
}
}
}
BjerksundStenslandApproximationEngine::
BjerksundStenslandApproximationEngine(
const boost::shared_ptr<GeneralizedBlackScholesProcess>& process)
: process_(process) {
registerWith(process_);
}
void BjerksundStenslandApproximationEngine::calculate() const {
QL_REQUIRE(arguments_.exercise->type() == Exercise::American,
"not an American Option");
boost::shared_ptr<AmericanExercise> ex =
boost::dynamic_pointer_cast<AmericanExercise>(arguments_.exercise);
QL_REQUIRE(ex, "non-American exercise given");
QL_REQUIRE(!ex->payoffAtExpiry(),
"payoff at expiry not handled");
boost::shared_ptr<PlainVanillaPayoff> payoff =
boost::dynamic_pointer_cast<PlainVanillaPayoff>(arguments_.payoff);
QL_REQUIRE(payoff, "non-plain payoff given");
Real variance =
process_->blackVolatility()->blackVariance(ex->lastDate(),
payoff->strike());
DiscountFactor dividendDiscount =
process_->dividendYield()->discount(ex->lastDate());
DiscountFactor riskFreeDiscount =
process_->riskFreeRate()->discount(ex->lastDate());
Real spot = process_->stateVariable()->value();
QL_REQUIRE(spot > 0.0, "negative or null underlying given");
Real strike = payoff->strike();
if (payoff->optionType()==Option::Put) {
// use put-call simmetry
std::swap(spot, strike);
std::swap(riskFreeDiscount, dividendDiscount);
payoff = boost::shared_ptr<PlainVanillaPayoff>(
new PlainVanillaPayoff(Option::Call, strike));
}
if (dividendDiscount>=1.0) {
// early exercise is never optimal - use Black formula
Real forwardPrice = spot * dividendDiscount / riskFreeDiscount;
BlackCalculator black(payoff, forwardPrice, std::sqrt(variance),
riskFreeDiscount);
results_.value = black.value();
results_.delta = black.delta(spot);
results_.deltaForward = black.deltaForward();
results_.elasticity = black.elasticity(spot);
results_.gamma = black.gamma(spot);
DayCounter rfdc = process_->riskFreeRate()->dayCounter();
DayCounter divdc = process_->dividendYield()->dayCounter();
DayCounter voldc = process_->blackVolatility()->dayCounter();
Time t =
rfdc.yearFraction(process_->riskFreeRate()->referenceDate(),
arguments_.exercise->lastDate());
results_.rho = black.rho(t);
t = divdc.yearFraction(process_->dividendYield()->referenceDate(),
arguments_.exercise->lastDate());
results_.dividendRho = black.dividendRho(t);
t = voldc.yearFraction(process_->blackVolatility()->referenceDate(),
arguments_.exercise->lastDate());
results_.vega = black.vega(t);
results_.theta = black.theta(spot, t);
results_.thetaPerDay = black.thetaPerDay(spot, t);
results_.strikeSensitivity = black.strikeSensitivity();
results_.itmCashProbability = black.itmCashProbability();
} else {
// early exercise can be optimal - use approximation
results_.value = americanCallApproximation(spot,
strike,
riskFreeDiscount,
dividendDiscount,
variance);
}
}
}
|