File: fdsimplebsswingengine.cpp

package info (click to toggle)
quantlib 1.2-2
  • links: PTS
  • area: main
  • in suites: wheezy
  • size: 30,760 kB
  • sloc: cpp: 232,809; ansic: 21,483; sh: 11,108; makefile: 4,717; lisp: 86
file content (132 lines) | stat: -rw-r--r-- 5,943 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2010 Klaus Spanderen

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file fdsimplebsswingengine.cpp
    \brief Finite Differences Black-Scholes engine for simple swing options
*/

#include <ql/processes/blackscholesprocess.hpp>
#include <ql/methods/finitedifferences/operators/fdmlinearoplayout.hpp>
#include <ql/methods/finitedifferences/meshers/uniform1dmesher.hpp>
#include <ql/methods/finitedifferences/utilities/fdminnervaluecalculator.hpp>
#include <ql/methods/finitedifferences/meshers/fdmmeshercomposite.hpp>
#include <ql/methods/finitedifferences/meshers/fdmblackscholesmesher.hpp>
#include <ql/pricingengines/vanilla/fdsimplebsswingengine.hpp>
#include <ql/methods/finitedifferences/stepconditions/fdmsimpleswingcondition.hpp>
#include <ql/methods/finitedifferences/stepconditions/fdmstepconditioncomposite.hpp>
#include <ql/methods/finitedifferences/solvers/fdmsimple2dbssolver.hpp>

namespace QuantLib {
    
    FdSimpleBSSwingEngine::FdSimpleBSSwingEngine(
            const boost::shared_ptr<GeneralizedBlackScholesProcess>& process,
            Size tGrid, Size xGrid,
            const FdmSchemeDesc& schemeDesc)
    : process_(process),
      tGrid_(tGrid),
      xGrid_(xGrid),
      schemeDesc_(schemeDesc) { 
    }
            
    void FdSimpleBSSwingEngine::calculate() const {

        QL_REQUIRE(arguments_.exercise->type() == Exercise::Bermudan,
                   "Bermudan exercise supported only");
        
        // 1. Layout
        std::vector<Size> dim;
        dim.push_back(xGrid_);
        dim.push_back(arguments_.maxExerciseRights+1);
        const boost::shared_ptr<FdmLinearOpLayout> layout(
                                              new FdmLinearOpLayout(dim));
        
        // 2. Mesher
        const boost::shared_ptr<StrikedTypePayoff> payoff =
            boost::dynamic_pointer_cast<StrikedTypePayoff>(arguments_.payoff);
        const Time maturity = process_->time(arguments_.exercise->lastDate());
        const boost::shared_ptr<Fdm1dMesher> equityMesher(
            new FdmBlackScholesMesher(xGrid_, process_,
                                      maturity, payoff->strike()));
        
        const boost::shared_ptr<Fdm1dMesher> exerciseMesher(
                 new Uniform1dMesher(0, arguments_.maxExerciseRights,
                                        arguments_.maxExerciseRights+1));
        
        std::vector<boost::shared_ptr<Fdm1dMesher> > meshers;
        meshers.push_back(equityMesher);
        meshers.push_back(exerciseMesher);
        boost::shared_ptr<FdmMesher> mesher (
                                     new FdmMesherComposite(layout, meshers));
        
        // 3. Calculator
        boost::shared_ptr<FdmInnerValueCalculator> calculator(
                                                    new FdmZeroInnerValue());
        
        // 4. Step conditions
        std::list<boost::shared_ptr<StepCondition<Array> > > stepConditions;
        std::list<std::vector<Time> > stoppingTimes;
        
        // 4.1 Bermudan step conditions
        std::vector<Time> exerciseTimes;
        for (Size i=0; i<arguments_.exercise->dates().size(); ++i) {
            Time t = process_->time(arguments_.exercise->dates()[i]);
            QL_REQUIRE(t >= 0, "exercise dates must not contain past date");
            exerciseTimes.push_back(t);
        }
        stoppingTimes.push_back(exerciseTimes);
        
        boost::shared_ptr<FdmInnerValueCalculator> exerciseCalculator(
                                    new FdmLogInnerValue(payoff, mesher, 0));

        stepConditions.push_back(boost::shared_ptr<StepCondition<Array> >(
            new FdmSimpleSwingCondition(exerciseTimes, mesher,
                                        exerciseCalculator, 1)));
        
        boost::shared_ptr<FdmStepConditionComposite> conditions(
                new FdmStepConditionComposite(stoppingTimes, stepConditions));
        
        // 5. Boundary conditions
        std::vector<boost::shared_ptr<FdmDirichletBoundary> > boundaries;
        
        // 6. Solver
        FdmSolverDesc solverDesc = { mesher, boundaries, conditions,
                                     calculator, maturity, tGrid_, 0 };
        boost::shared_ptr<FdmSimple2dBSSolver> solver(
                new FdmSimple2dBSSolver(
                               Handle<GeneralizedBlackScholesProcess>(process_),
                               payoff->strike(), solverDesc, schemeDesc_));
    
        const Real spot = process_->x0();
        
        std::vector< std::pair<Real, Real> > exerciseValues;
        for (Size i=arguments_.minExerciseRights;
             i <= arguments_.maxExerciseRights; ++i) {
            const Real y = std::exp(Real(i));
            exerciseValues.push_back(
                           std::pair<Real, Real>(solver->valueAt(spot, y), y));
        }
        const Real y = std::max_element(exerciseValues.begin(),
                                        exerciseValues.end())->second;

        results_.value = solver->valueAt(spot, y);
        results_.delta = solver->deltaAt(spot, y, spot*0.01);
        results_.gamma = solver->gammaAt(spot, y, spot*0.01);
        results_.theta = solver->thetaAt(spot, y);
    }
}