1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2007, 2008 Klaus Spanderen
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file hybridhestonhullwhiteprocess.hpp
\brief hybrid equity (heston model)
with stochastic interest rates (hull white model)
*/
#include <ql/termstructures/yield/flatforward.hpp>
#include <ql/processes/hybridhestonhullwhiteprocess.hpp>
namespace QuantLib {
HybridHestonHullWhiteProcess::HybridHestonHullWhiteProcess(
const boost::shared_ptr<HestonProcess> & hestonProcess,
const boost::shared_ptr<HullWhiteForwardProcess> & hullWhiteProcess,
Real corrEquityShortRate,
HybridHestonHullWhiteProcess::Discretization discretization)
: hestonProcess_(hestonProcess),
hullWhiteProcess_(hullWhiteProcess),
hullWhiteModel_(new HullWhite(hestonProcess->riskFreeRate(),
hullWhiteProcess->a(),
hullWhiteProcess->sigma())),
corrEquityShortRate_(corrEquityShortRate),
discretization_(discretization),
maxRho_(std::sqrt(1-hestonProcess->rho()*hestonProcess->rho())
- std::sqrt(QL_EPSILON) /* reserve for rounding errors */),
T_(hullWhiteProcess->getForwardMeasureTime()),
endDiscount_(hestonProcess->riskFreeRate()->discount(T_)) {
QL_REQUIRE( corrEquityShortRate*corrEquityShortRate
+hestonProcess->rho()*hestonProcess->rho() <= 1.0,
"correlation matrix is not positive definite");
QL_REQUIRE(hullWhiteProcess->sigma() > 0.0,
"positive vol of Hull White process is required");
}
Size HybridHestonHullWhiteProcess::size() const {
return 3;
}
Disposable<Array> HybridHestonHullWhiteProcess::initialValues() const {
Array retVal(3);
retVal[0] = hestonProcess_->s0()->value();
retVal[1] = hestonProcess_->v0();
retVal[2] = hullWhiteProcess_->x0();
return retVal;
}
Disposable<Array>
HybridHestonHullWhiteProcess::drift(Time t, const Array& x) const {
Array retVal(3), x0(2);
x0[0] = x[0]; x0[1] = x[1];
Array y0 = hestonProcess_->drift(t, x0);
retVal[0] = y0[0]; retVal[1] = y0[1];
retVal[2] = hullWhiteProcess_->drift(t, x[2]);
return retVal;
}
Disposable<Array>
HybridHestonHullWhiteProcess::apply(const Array& x0,const Array& dx) const {
Array retVal(3), xt(2), dxt(2);
xt[0] = x0[0]; xt[1] = x0[1];
dxt[0] = dx[0]; dxt[1] = dx[1];
Array yt = hestonProcess_->apply(xt, dxt);
retVal[0] = yt[0]; retVal[1] = yt[1];
retVal[2] = hullWhiteProcess_->apply(x0[2], dx[2]);
return retVal;
}
Disposable<Matrix>
HybridHestonHullWhiteProcess::diffusion(Time t, const Array& x) const {
Matrix retVal(3,3);
Array xt(2); xt[0] = x[0]; xt[1] = x[1];
Matrix m = hestonProcess_->diffusion(t, xt);
retVal[0][0] = m[0][0]; retVal[0][1] = 0.0; retVal[0][2] = 0.0;
retVal[1][0] = m[1][0]; retVal[1][1] = m[1][1]; retVal[1][2] = 0.0;
const Real sigma = hullWhiteProcess_->sigma();
retVal[2][0] = corrEquityShortRate_ * sigma;
retVal[2][1] = - retVal[2][0]*retVal[1][0] / retVal[1][1];
retVal[2][2] = std::sqrt( sigma*sigma - retVal[2][1]*retVal[2][1]
- retVal[2][0]*retVal[2][0] );
return retVal;
}
Disposable<Array>
HybridHestonHullWhiteProcess::evolve(Time t0, const Array& x0,
Time dt, const Array& dw) const {
const Rate r = x0[2];
const Real a = hullWhiteProcess_->a();
const Real sigma = hullWhiteProcess_->sigma();
const Real rho = corrEquityShortRate_;
const Real xi = hestonProcess_->rho();
const Volatility eta = (x0[1] > 0.0) ? std::sqrt(x0[1]) : 0.0;
const Time s = t0;
const Time t = t0 + dt;
const Time T = T_;
const Rate dy
= hestonProcess_->dividendYield()->forwardRate(s, t, Continuous,
NoFrequency);
const Real df
= std::log( hestonProcess_->riskFreeRate()->discount(t)
/ hestonProcess_->riskFreeRate()->discount(s));
const Real eaT=std::exp(-a*T);
const Real eat=std::exp(-a*t);
const Real eas=std::exp(-a*s);
const Real iat=1.0/eat;
const Real ias=1.0/eas;
const Real m1 = -(dy+0.5*eta*eta)*dt - df;
const Real m2 = -rho*sigma*eta/a*(dt-1/a*eaT*(iat-ias));
const Real m3 = (r - hullWhiteProcess_->alpha(s))
*hullWhiteProcess_->B(s,t);
const Real m4 = sigma*sigma/(2*a*a)
*(dt + 2/a*(eat-eas) - 1/(2*a)*(eat*eat-eas*eas));
const Real m5 = -sigma*sigma/(a*a)
*(dt - 1/a*(1-eat*ias) - 1/(2*a)*eaT*(iat-2*ias+eat*ias*ias));
const Real mu = m1 + m2 + m3 + m4 + m5;
Array retVal(3);
const Real eta2 = hestonProcess_->sigma() * eta;
const Real nu
= hestonProcess_->kappa()*(hestonProcess_->theta() - eta*eta);
retVal[1] = x0[1] + nu*dt + eta2*std::sqrt(dt)
*(xi*dw[0]+std::sqrt(1-xi*xi)*dw[1]);
if (discretization_ == BSMHullWhite) {
const Real v1 = eta*eta*dt
+ sigma*sigma/(a*a)*(dt - 2/a*(1 - eat*ias)
+ 1/(2*a)*(1 - eat*eat*ias*ias))
+ 2*sigma*eta/a*rho*(dt - 1/a*(1 - eat*ias));
const Real v2 = hullWhiteProcess_->variance(t0, r, dt);
const Real v12 = (1-eat*ias)*(sigma*eta/a*rho + sigma*sigma/(a*a))
- sigma*sigma/(2*a*a)*(1 - eat*eat*ias*ias);
QL_REQUIRE(v1 > 0.0 && v2 > 0.0, "zero or negative variance given");
// terminal rho must be between -maxRho and +maxRho
const Real rhoT
= std::min(maxRho_, std::max(-maxRho_, v12/std::sqrt(v1*v2)));
QL_REQUIRE( rhoT <= 1.0 && rhoT >= -1.0
&& 1-rhoT*rhoT/(1-xi*xi) >= 0.0,
"invalid terminal correlation");
const Real dw_0 = dw[0];
const Real dw_2 = rhoT*dw[0]- rhoT*xi/std::sqrt(1-xi*xi)*dw[1]
+ std::sqrt(1 - rhoT*rhoT/(1-xi*xi))*dw[2];
retVal[2] = hullWhiteProcess_->evolve(t0, r, dt, dw_2);
const Real vol = std::sqrt(v1)*dw_0;
retVal[0] = x0[0]*std::exp(mu + vol);
}
else if (discretization_ == Euler) {
const Real dw_2 = rho*dw[0]- rho*xi/std::sqrt(1-xi*xi)*dw[1]
+ std::sqrt(1 - rho*rho/(1-xi*xi))*dw[2];
retVal[2] = hullWhiteProcess_->evolve(t0, r, dt, dw_2);
const Real vol = eta*std::sqrt(dt)*dw[0];
retVal[0] = x0[0]*std::exp(mu + vol);
}
else
QL_FAIL("unknown discretization scheme");
return retVal;
}
DiscountFactor
HybridHestonHullWhiteProcess::numeraire(Time t, const Array& x) const {
return hullWhiteModel_->discountBond(t, T_, x[2]) / endDiscount_;
}
Real HybridHestonHullWhiteProcess::eta() const {
return corrEquityShortRate_;
}
const boost::shared_ptr<HestonProcess>&
HybridHestonHullWhiteProcess::hestonProcess() const {
return hestonProcess_;
}
const boost::shared_ptr<HullWhiteForwardProcess>&
HybridHestonHullWhiteProcess::hullWhiteProcess() const {
return hullWhiteProcess_;
}
HybridHestonHullWhiteProcess::Discretization
HybridHestonHullWhiteProcess::discretization() const {
return discretization_;
}
Time HybridHestonHullWhiteProcess::time(const Date& date) const {
return hestonProcess_->time(date);
}
void HybridHestonHullWhiteProcess::update() {
endDiscount_ = hestonProcess_->riskFreeRate()->discount(T_);
}
}
|