1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2015 Andres Hernandez
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file fireflyalgorithm.hpp
\brief Implementation based on:
Yang, Xin-She (2009) Firefly Algorithm, Levy Flights and Global
Optimization. Research and Development in Intelligent Systems XXVI, pp 209-218.
http://arxiv.org/pdf/1003.1464.pdf
*/
#ifndef quantlib_optimization_fireflyalgorithm_hpp
#define quantlib_optimization_fireflyalgorithm_hpp
#include <ql/math/optimization/problem.hpp>
#include <ql/math/optimization/constraint.hpp>
#include <ql/experimental/math/isotropicrandomwalk.hpp>
#include <ql/experimental/math/levyflightdistribution.hpp>
#include <ql/math/randomnumbers/mt19937uniformrng.hpp>
#include <ql/math/randomnumbers/seedgenerator.hpp>
#include <boost/random/mersenne_twister.hpp>
typedef boost::mt19937 base_generator_type;
#include <boost/random/normal_distribution.hpp>
typedef boost::random::normal_distribution<QuantLib::Real> BoostNormalDistribution;
#include <boost/random/uniform_int_distribution.hpp>
typedef boost::random::uniform_int_distribution<QuantLib::Size> uniform_integer;
#include <boost/random/variate_generator.hpp>
typedef boost::variate_generator<base_generator_type, uniform_integer> variate_integer;
#include <cmath>
namespace QuantLib {
/*! The main process is as follows:
M individuals are used to explore the N-dimensional parameter space:
\f$ X_{i}^k = (X_{i, 1}^k, X_{i, 2}^k, \ldots, X_{i, N}^k) \f$ is the kth-iteration
for the ith-individual. X is updated via the rule
\f[
X_{i, j}^{k+1} = X_{i, j}^k + I(X^k)_{i,j} + RandomWalk_{i,j}^k
\f]
The intensity function I(X) should be monotonic
The optimization stops either because the number of iterations has been reached
or because the stationary function value limit has been reached.
The current implementation extends the normal Firefly Algorithm with a
differential evolution (DE) optimizer according to:
Afnizanfaizal Abdullah, et al. "A New Hybrid Firefly Algorithm for Complex and
Nonlinear Problem". Volume 151 of the series Advances in Intelligent and Soft
Computing pp 673-680, 2012.
http://link.springer.com/chapter/10.1007%2F978-3-642-28765-7_81
In effect this implementation provides a fully fledged DE global optimizer
as well. The Firefly Algorithm was easy to combine with DE because it already
contained a step where the current solutions are sorted. The population is
then divided into two subpopulations based on their order. The subpopulation
with the best results are updated via the firefly algorithm. The worse
subpopulation is updated via the DE operator:
\f[
Y^{k+1} = X_{best}^k + F(X_{r1}^k - X_{r2}^k)
\f]
and
\f[
X_{i,j}^{k+1} = Y_{i,j}^{k+1}\ \text{if} R_{i,j} <= C
\f]
\f[
X_{i,j}^{k+1} = X_{i,j}^{k+1}\ \text{otherwise}
\f]
where C is the crossover constant, and R is a random uniformly distributed
number.
*/
class FireflyAlgorithm : public OptimizationMethod {
public:
class RandomWalk;
class Intensity;
friend class RandomWalk;
friend class Intensity;
FireflyAlgorithm(Size M,
const ext::shared_ptr<Intensity>& intensity,
const ext::shared_ptr<RandomWalk>& randomWalk,
Size Mde = 0,
Real mutationFactor = 1.0,
Real crossoverFactor = 0.5,
unsigned long seed = SeedGenerator::instance().get());
void startState(Problem &P, const EndCriteria &endCriteria);
EndCriteria::Type minimize(Problem &P, const EndCriteria &endCriteria);
protected:
std::vector<Array> x_, xI_, xRW_;
std::vector<std::pair<Real, Size> > values_;
Array lX_, uX_;
Real mutation_, crossover_;
Size M_, N_, Mde_, Mfa_;
ext::shared_ptr<Intensity> intensity_;
ext::shared_ptr<RandomWalk> randomWalk_;
variate_integer drawIndex_;
MersenneTwisterUniformRng rng_;
};
//! Base intensity class
/*! Derived classes need to implement only intensityImpl
*/
class FireflyAlgorithm::Intensity {
friend class FireflyAlgorithm;
public:
virtual ~Intensity() {}
//! find brightest firefly for each firefly
void findBrightest();
protected:
Size Mfa_, N_;
const std::vector<Array> *x_;
const std::vector<std::pair<Real, Size> > *values_;
std::vector<Array> *xI_;
virtual Real intensityImpl(Real valueX, Real valueY, Real distance) = 0;
inline Real distance(const Array& x, const Array& y) const {
Real d = 0.0;
for (Size i = 0; i < N_; i++) {
Real diff = x[i] - y[i];
d += diff*diff;
}
return d;
}
private:
void init(FireflyAlgorithm *fa) {
x_ = &fa->x_;
xI_ = &fa->xI_;
values_ = &fa->values_;
Mfa_ = fa->Mfa_;
N_ = fa->N_;
}
};
//! Exponential Intensity
/* Exponentially decreasing intensity
*/
class ExponentialIntensity : public FireflyAlgorithm::Intensity {
public:
ExponentialIntensity(Real beta0, Real betaMin, Real gamma)
: beta0_(beta0), betaMin_(betaMin), gamma_(gamma) {}
protected:
Real intensityImpl(Real valueX, Real valueY, Real d){
return (beta0_ - betaMin_)*std::exp(-gamma_*d) + betaMin_;
}
Real beta0_, betaMin_, gamma_;
};
//! Inverse Square Intensity
/* Inverse law square
*/
class InverseLawSquareIntensity : public FireflyAlgorithm::Intensity {
public:
InverseLawSquareIntensity(Real beta0, Real betaMin)
: beta0_(beta0), betaMin_(betaMin) {}
protected:
Real intensityImpl(Real valueX, Real valueY, Real d) {
return (beta0_ - betaMin_)/(d+ QL_EPSILON) + betaMin_;
}
Real beta0_, betaMin_;
};
//! Base Random Walk class
/*! Derived classes need to implement only walkImpl
*/
class FireflyAlgorithm::RandomWalk {
friend class FireflyAlgorithm;
public:
virtual ~RandomWalk() {}
//! perform random walk
void walk() {
for (Size i = 0; i < Mfa_; i++) {
walkImpl((*xRW_)[(*values_)[i].second]);
}
}
protected:
Size Mfa_, N_;
const std::vector<Array> *x_;
const std::vector<std::pair<Real, Size> > *values_;
std::vector<Array> *xRW_;
Array *lX_, *uX_;
virtual void walkImpl(Array & xRW) = 0;
virtual void init(FireflyAlgorithm *fa) {
x_ = &fa->x_;
xRW_ = &fa->xRW_;
values_ = &fa->values_;
Mfa_ = fa->Mfa_;
N_ = fa->N_;
lX_ = &fa->lX_;
uX_ = &fa->uX_;
}
};
//! Distribution Walk
/* Random walk given by distribution template parameter. The
distribution must be compatible with boost's Random
variate_generator
*/
template <class Distribution>
class DistributionRandomWalk : public FireflyAlgorithm::RandomWalk {
public:
typedef IsotropicRandomWalk<Distribution, base_generator_type> WalkRandom;
explicit DistributionRandomWalk(Distribution dist,
Real delta = 0.9,
unsigned long seed = SeedGenerator::instance().get())
: walkRandom_(base_generator_type(seed), dist, 1, Array(1, 1.0), seed),
delta_(delta) {}
protected:
void walkImpl(Array & xRW) {
walkRandom_.nextReal(&xRW[0]);
xRW *= delta_;
}
void init(FireflyAlgorithm *fa) {
FireflyAlgorithm::RandomWalk::init(fa);
walkRandom_.setDimension(N_, *lX_, *uX_);
}
WalkRandom walkRandom_;
Real delta_;
};
//! Gaussian Walk
/* Gaussian random walk
*/
class GaussianWalk : public DistributionRandomWalk<BoostNormalDistribution> {
public:
explicit GaussianWalk(Real sigma,
Real delta = 0.9,
unsigned long seed = SeedGenerator::instance().get())
: DistributionRandomWalk<BoostNormalDistribution>(
BoostNormalDistribution(0.0, sigma), delta, seed){}
};
//! Levy Flight Random Walk
/* Levy flight random walk
*/
class LevyFlightWalk : public DistributionRandomWalk<LevyFlightDistribution> {
public:
explicit LevyFlightWalk(Real alpha,
Real xm = 0.5,
Real delta = 0.9,
unsigned long seed = SeedGenerator::instance().get())
: DistributionRandomWalk<LevyFlightDistribution>(
LevyFlightDistribution(xm, alpha), delta, seed) {}
};
//! Decreasing Random Walk
/* Gaussian random walk, but size of step decreases with each iteration step
*/
class DecreasingGaussianWalk : public GaussianWalk {
public:
explicit DecreasingGaussianWalk(
Real sigma,
Real delta = 0.9,
unsigned long seed = SeedGenerator::instance().get())
: GaussianWalk(sigma, delta, seed), delta0_(delta) {}
protected:
void walkImpl(Array & xRW) {
iteration_++;
if (iteration_ > Mfa_) {
//Every time all the fireflies have been processed
//multiply delta by itself
iteration_ = 0;
delta_ *= delta_;
}
GaussianWalk::walkImpl(xRW);
}
void init(FireflyAlgorithm *fa) {
GaussianWalk::init(fa);
iteration_ = 0;
delta_ = delta0_;
}
private:
Real delta0_;
Size iteration_;
};
}
#endif
|