1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2015 Andres Hernandez
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/experimental/math/particleswarmoptimization.hpp>
#include <ql/math/randomnumbers/sobolrsg.hpp>
#include <cmath>
using std::sqrt;
namespace QuantLib {
ParticleSwarmOptimization::ParticleSwarmOptimization(Size M,
const ext::shared_ptr<Topology>& topology,
const ext::shared_ptr<Inertia>& inertia,
Real c1,
Real c2,
unsigned long seed)
: M_(M), rng_(seed), topology_(topology), inertia_(inertia) {
Real phi = c1 + c2;
QL_ENSURE(phi*phi - 4 * phi, "Invalid phi");
c0_ = 2.0 / std::abs(2.0 - phi - sqrt(phi*phi - 4 * phi));
c1_ = c0_*c1;
c2_ = c0_*c2;
}
ParticleSwarmOptimization::ParticleSwarmOptimization(Size M,
const ext::shared_ptr<Topology>& topology,
const ext::shared_ptr<Inertia>& inertia,
Real omega,
Real c1,
Real c2,
unsigned long seed)
: M_(M), c0_(omega), c1_(c1), c2_(c2), rng_(seed), topology_(topology), inertia_(inertia) {}
void ParticleSwarmOptimization::startState(Problem &P, const EndCriteria &endCriteria) {
QL_REQUIRE(topology_, "Invalid topology");
QL_REQUIRE(inertia_, "Invalid inertia");
N_ = P.currentValue().size();
topology_->setSize(M_);
inertia_->setSize(M_, N_, c0_, endCriteria);
X_.reserve(M_);
V_.reserve(M_);
pBX_.reserve(M_);
pBF_ = Array(M_);
gBX_.reserve(M_);
gBF_ = Array(M_);
uX_ = P.constraint().upperBound(P.currentValue());
lX_ = P.constraint().lowerBound(P.currentValue());
Array bounds = uX_ - lX_;
//Random initialization is done by Sobol sequence
SobolRsg sobol(N_ * 2);
//Prepare containers
for (Size i = 0; i < M_; i++) {
const SobolRsg::sample_type::value_type &sample = sobol.nextSequence().value;
X_.push_back(Array(N_, 0.0));
Array& x = X_.back();
V_.push_back(Array(N_, 0.0));
Array& v = V_.back();
gBX_.push_back(Array(N_, 0.0));
for (Size j = 0; j < N_; j++) {
//Assign X=lb+(ub-lb)*random
x[j] = lX_[j] + bounds[j] * sample[2 * j];
//Assign V=(ub-lb)*2*random-(ub-lb) -> between (lb-ub) and (ub-lb)
v[j] = bounds[j] * (2.0*sample[2 * j + 1] - 1.0);
}
//Evaluate X and assign as personal best
pBX_.push_back(X_.back());
pBF_[i] = P.value(X_.back());
}
//init topology & inertia
topology_->init(this);
inertia_->init(this);
}
EndCriteria::Type ParticleSwarmOptimization::minimize(Problem &P, const EndCriteria &endCriteria) {
QL_REQUIRE(!P.constraint().empty(), "PSO is a constrained optimizer");
EndCriteria::Type ecType = EndCriteria::None;
P.reset();
Size iteration = 0;
Size iterationStat = 0;
Size maxIteration = endCriteria.maxIterations();
Size maxIStationary = endCriteria.maxStationaryStateIterations();
Real bestValue = QL_MAX_REAL;
Size bestPosition = 0;
startState(P, endCriteria);
//Set best value & position
for (Size i = 0; i < M_; i++) {
if (pBF_[i] < bestValue) {
bestValue = pBF_[i];
bestPosition = i;
}
}
//Run optimization
do {
iteration++;
iterationStat++;
//Check if stopping criteria is met
if (iteration > maxIteration || iterationStat > maxIStationary)
break;
//According to the topology, determine best global position
topology_->findSocialBest();
//Call inertia to change internal state
inertia_->setValues();
//Loop over particles
for (Size i = 0; i < M_; i++) {
Array& x = X_[i];
Array& pB = pBX_[i];
const Array& gB = gBX_[i];
Array& v = V_[i];
//Loop over dimensions
for (Size j = 0; j < N_; j++) {
//Update velocity
v[j] += c1_*rng_.nextReal()*(pB[j] - x[j]) + c2_*rng_.nextReal()*(gB[j] - x[j]);
//Update position
x[j] += v[j];
//Enforce bounds on positions
if (x[j] < lX_[j]) {
x[j] = lX_[j];
v[j] = 0.0;
}
else if (x[j] > uX_[j]) {
x[j] = uX_[j];
v[j] = 0.0;
}
}
//Evaluate x
Real f = P.value(x);
if (f < pBF_[i]) {
//Update personal best
pBF_[i] = f;
pB = x;
//Check stationary condition
if (f < bestValue) {
bestValue = f;
bestPosition = i;
iterationStat = 0;
}
}
}
} while (true);
if (iteration > maxIteration)
ecType = EndCriteria::MaxIterations;
else
ecType = EndCriteria::StationaryPoint;
//Set result to best point
P.setCurrentValue(pBX_[bestPosition]);
P.setFunctionValue(bestValue);
return ecType;
}
void AdaptiveInertia::setValues() {
Real currBest = (*pBF_)[0];
for (Size i = 1; i < M_; i++) {
if (currBest >(*pBF_)[i]) currBest = (*pBF_)[i];
}
if (started_) { //First iteration leaves inertia unchanged
if (currBest < best_) {
best_ = currBest;
adaptiveCounter--;
}
else {
adaptiveCounter++;
}
if (adaptiveCounter > sh_) {
c0_ = std::max(minInertia_, std::min(maxInertia_, c0_*0.5));
}
else if (adaptiveCounter < sl_) {
c0_ = std::max(minInertia_, std::min(maxInertia_, c0_*2.0));
}
}
else {
best_ = currBest;
started_ = true;
}
for (Size i = 0; i < M_; i++) {
(*V_)[i] *= c0_;
}
}
void KNeighbors::findSocialBest() {
for (Size i = 0; i < M_; i++) {
Real bestF = (*pBF_)[i];
Size bestX = 0;
//Search K_ neightbors upwards
Size upper = std::min(i + K_, M_);
//Search K_ neighbors downwards
Size lower = std::max(i, K_ + 1) - K_ - 1;
for (Size j = lower; j < upper; j++) {
if ((*pBF_)[j] < bestF) {
bestF = (*pBF_)[j];
bestX = j;
}
}
if (i + K_ >= M_) { //loop around if i+K >= M_
for (Size j = 0; j < i + K_ - M_; j++) {
if ((*pBF_)[j] < bestF) {
bestF = (*pBF_)[j];
bestX = j;
}
}
}
else if (i < K_) {//loop around from above
for (Size j = M_ - (K_ - i) - 1; j < M_; j++) {
if ((*pBF_)[j] < bestF) {
bestF = (*pBF_)[j];
bestX = j;
}
}
}
(*gBX_)[i] = (*pBX_)[bestX];
(*gBF_)[i] = bestF;
}
}
ClubsTopology::ClubsTopology(
Size defaultClubs, Size totalClubs,
Size maxClubs, Size minClubs,
Size resetIteration, unsigned long seed) :
totalClubs_(totalClubs), maxClubs_(maxClubs),
minClubs_(minClubs), defaultClubs_(defaultClubs),
iteration_(0), resetIteration_(resetIteration),
bestByClub_(totalClubs, 0), worstByClub_(totalClubs, 0),
generator_(seed), distribution_(1, totalClubs_) {
QL_REQUIRE(totalClubs_ >= defaultClubs_,
"Total number of clubs must be larger or equal than default clubs");
QL_REQUIRE(defaultClubs_ >= minClubs_,
"Number of default clubs must be larger or equal than minimum clubs");
QL_REQUIRE(maxClubs_ >= defaultClubs_,
"Number of maximum clubs must be larger or equal than default clubs");
QL_REQUIRE(totalClubs_ >= maxClubs_,
"Total number of clubs must be larger or equal than maximum clubs");
}
void ClubsTopology::setSize(Size M) {
M_ = M;
if (defaultClubs_ < totalClubs_) {
clubs4particles_ = std::vector<std::vector<bool> >(M_, std::vector<bool>(totalClubs_, false));
particles4clubs_ = std::vector<std::vector<bool> >(totalClubs_, std::vector<bool>(M_, false));
//Assign particles to clubs randomly
for (Size i = 0; i < M_; i++) {
std::vector<bool> &clubSet = clubs4particles_[i];
for (Size j = 0; j < defaultClubs_; j++) {
Size index = distribution_(generator_);
while (clubSet[index]) { index = distribution_(generator_); }
clubSet[index] = true;
particles4clubs_[index][i] = true;
}
}
}
else {
//Since totalClubs_ == defaultClubs_, then just initialize to true
clubs4particles_ = std::vector<std::vector<bool> >(M_, std::vector<bool>(totalClubs_, true));
particles4clubs_ = std::vector<std::vector<bool> >(totalClubs_, std::vector<bool>(M_, true));
}
}
void ClubsTopology::findSocialBest() {
//Update iteration
iteration_++;
bool reset = false;
if (iteration_ == resetIteration_) {
iteration_ = 0;
reset = true;
}
//Find best by current club
for (Size i = 0; i < totalClubs_; i++) {
Real bestByClub = QL_MAX_REAL;
Real worstByClub = -QL_MAX_REAL;
Size bestP = 0;
Size worstP = 0;
const std::vector<bool> &particlesSet = particles4clubs_[i];
for (Size j = 0; j < M_; j++) {
if (particlesSet[j]) {
if (bestByClub >(*pBF_)[j]) {
bestByClub = (*pBF_)[j];
bestP = j;
}
else if (worstByClub < (*pBF_)[j]) {
worstByClub = (*pBF_)[j];
worstP = j;
}
}
}
bestByClub_[i] = bestP;
worstByClub_[i] = worstP;
}
//Update clubs && global best
for (Size i = 0; i < M_; i++) {
std::vector<bool> &clubSet = clubs4particles_[i];
bool best = true;
bool worst = true;
Size currentClubs = 0;
for (Size j = 0; j < totalClubs_; j++) {
if (clubSet[j]) {
//If still thought of the best, check if best in club j
if (best && i != bestByClub_[j]) best = false;
//If still thought of the worst, check if worst in club j
if (worst && i != worstByClub_[j]) worst = false;
//Update currentClubs
currentClubs++;
}
}
//Update clubs
if (best) {
//Leave random club
leaveRandomClub(i, currentClubs);
}
else if (worst) {
//Join random club
joinRandomClub(i, currentClubs);
}
else if (reset && currentClubs != defaultClubs_) {
//If membership != defaultClubs_, then leave or join accordingly
if (currentClubs < defaultClubs_) {
//Join random club
joinRandomClub(i, currentClubs);
}
else {
//Leave random club
leaveRandomClub(i, currentClubs);
}
}
//Update global best
Real bestNeighborF = QL_MAX_REAL;
Size bestNeighborX = 0;
for (Size j = 0; j < totalClubs_; j++) {
if (clubSet[j] && bestNeighborF >(*pBF_)[bestByClub_[j]]) {
bestNeighborF = (*pBF_)[bestByClub_[j]];
bestNeighborX = j;
}
}
(*gBX_)[i] = (*pBX_)[bestNeighborX];
(*gBF_)[i] = bestNeighborF;
}
}
void ClubsTopology::leaveRandomClub(Size particle, Size currentClubs) {
Size randIndex = distribution_(generator_,
uniform_integer::param_type(1, currentClubs));
Size index = 1;
std::vector<bool> &clubSet = clubs4particles_[particle];
for (Size j = 0; j < totalClubs_; j++) {
if (clubSet[j]) {
if (index == randIndex) {
clubSet[j] = false;
particles4clubs_[j][particle] = false;
break;
}
index++;
}
}
}
void ClubsTopology::joinRandomClub(Size particle, Size currentClubs) {
Size randIndex = totalClubs_ == currentClubs ? 1 :
distribution_(generator_, uniform_integer::param_type(1, totalClubs_ - currentClubs));
Size index = 1;
std::vector<bool> &clubSet = clubs4particles_[particle];
for (Size j = 0; j < totalClubs_; j++) {
if (!clubSet[j]) {
if (index == randIndex) {
clubSet[j] = true;
particles4clubs_[j][particle] = true;
break;
}
index++;
}
}
}
}
|