1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2015 Johannes Göttker-Schnetmann
Copyright (C) 2015 Klaus Spanderen
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file hestonslvmcmodel.cpp
*/
#include <ql/math/functional.hpp>
#include <ql/termstructures/volatility/equityfx/fixedlocalvolsurface.hpp>
#include <ql/experimental/models/hestonslvmcmodel.hpp>
#include <ql/experimental/processes/hestonslvprocess.hpp>
#if defined(__GNUC__) && (((__GNUC__ == 4) && (__GNUC_MINOR__ >= 8)) || (__GNUC__ > 4))
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-local-typedefs"
#endif
#include <boost/multi_array.hpp>
#if defined(__GNUC__) && (((__GNUC__ == 4) && (__GNUC_MINOR__ >= 8)) || (__GNUC__ > 4))
#pragma GCC diagnostic pop
#endif
namespace QuantLib {
HestonSLVMCModel::HestonSLVMCModel(
const Handle<LocalVolTermStructure>& localVol,
const Handle<HestonModel>& hestonModel,
const ext::shared_ptr<BrownianGeneratorFactory>& brownianGeneratorFactory,
const Date& endDate,
Size timeStepsPerYear,
Size nBins,
Size calibrationPaths,
const std::vector<Date>& mandatoryDates,
const Real mixingFactor)
: localVol_(localVol),
hestonModel_(hestonModel),
brownianGeneratorFactory_(brownianGeneratorFactory),
endDate_(endDate),
nBins_(nBins),
calibrationPaths_(calibrationPaths),
mixingFactor_(mixingFactor) {
registerWith(localVol_);
registerWith(hestonModel_);
const DayCounter dc = hestonModel_->process()->riskFreeRate()->dayCounter();
const Date refDate = hestonModel_->process()->riskFreeRate()->referenceDate();
std::vector<Time> gridTimes;
gridTimes.reserve(mandatoryDates.size()+1);
for (Size i=0; i < mandatoryDates.size(); ++i) {
gridTimes.push_back(dc.yearFraction(refDate, mandatoryDates[i]));
}
gridTimes.push_back(dc.yearFraction(refDate, endDate));
timeGrid_ = ext::make_shared<TimeGrid>(gridTimes.begin(), gridTimes.end(),
std::max(Size(2), Size(gridTimes.back()*timeStepsPerYear)));
}
ext::shared_ptr<HestonProcess> HestonSLVMCModel::hestonProcess() const {
return hestonModel_->process();
}
ext::shared_ptr<LocalVolTermStructure> HestonSLVMCModel::localVol() const {
return localVol_.currentLink();
}
ext::shared_ptr<LocalVolTermStructure>
HestonSLVMCModel::leverageFunction() const {
calculate();
return leverageFunction_;
}
void HestonSLVMCModel::performCalculations() const {
const ext::shared_ptr<HestonProcess> hestonProcess
= hestonModel_->process();
const ext::shared_ptr<Quote> spot
= hestonProcess->s0().currentLink();
const Real v0 = hestonProcess->v0();
const DayCounter dc = hestonProcess->riskFreeRate()->dayCounter();
const Date referenceDate = hestonProcess->riskFreeRate()->referenceDate();
const Volatility lv0
= localVol_->localVol(0.0, spot->value())/std::sqrt(v0);
const ext::shared_ptr<Matrix> L(new Matrix(nBins_, timeGrid_->size()));
std::vector<ext::shared_ptr<std::vector<Real> > >
vStrikes(timeGrid_->size());
for (Size i=0; i < timeGrid_->size(); ++i) {
const Integer u = nBins_/2;
const Real dx = spot->value()*std::sqrt(QL_EPSILON);
vStrikes[i] = ext::make_shared<std::vector<Real> >(nBins_);
for (Integer j=0; j < Integer(nBins_); ++j)
vStrikes[i]->at(j) = spot->value() + (j - u)*dx;
}
std::fill(L->column_begin(0),L->column_end(0), lv0);
leverageFunction_ = ext::make_shared<FixedLocalVolSurface>(
referenceDate,
std::vector<Time>(timeGrid_->begin(), timeGrid_->end()),
vStrikes, L, dc);
const ext::shared_ptr<HestonSLVProcess> slvProcess
= ext::make_shared<HestonSLVProcess>(hestonProcess, leverageFunction_, mixingFactor_);
std::vector<std::pair<Real, Real> > pairs(
calibrationPaths_, std::make_pair(spot->value(), v0));
const Size k = calibrationPaths_ / nBins_;
const Size m = calibrationPaths_ % nBins_;
const Size timeSteps = timeGrid_->size()-1;
typedef boost::multi_array<Real, 3> path_type;
path_type paths(boost::extents[calibrationPaths_][timeSteps][2]);
const ext::shared_ptr<BrownianGenerator> brownianGenerator =
brownianGeneratorFactory_->create(2, timeSteps);
for (Size i=0; i < calibrationPaths_; ++i) {
brownianGenerator->nextPath();
std::vector<Real> tmp(2);
for (Size j=0; j < timeSteps; ++j) {
brownianGenerator->nextStep(tmp);
paths[i][j][0] = tmp[0];
paths[i][j][1] = tmp[1];
}
}
for (Size n=1; n < timeGrid_->size(); ++n) {
const Time t = timeGrid_->at(n-1);
const Time dt = timeGrid_->dt(n-1);
Array x0(2), dw(2);
for (Size i=0; i < calibrationPaths_; ++i) {
x0[0] = pairs[i].first;
x0[1] = pairs[i].second;
dw[0] = paths[i][n-1][0];
dw[1] = paths[i][n-1][1];
x0 = slvProcess->evolve(t, x0, dt, dw);
pairs[i].first = x0[0];
pairs[i].second = x0[1];
}
std::sort(pairs.begin(), pairs.end());
Size s = 0U, e = 0U;
for (Size i=0; i < nBins_; ++i) {
const Size inc = k + static_cast<unsigned long>(i < m);
e = s + inc;
Real sum=0.0;
for (Size j=s; j < e; ++j) {
sum+=pairs[j].second;
}
sum/=inc;
vStrikes[n]->at(i) = 0.5*(pairs[e-1].first + pairs[s].first);
(*L)[i][n] = std::sqrt(square<Real>()(
localVol_->localVol(t, vStrikes[n]->at(i), true))/sum);
s = e;
}
leverageFunction_->setInterpolation<Linear>();
}
}
}
|