1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2013 Peter Caspers
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/experimental/risk/creditriskplus.hpp>
#include <map>
using std::sqrt;
namespace QuantLib {
CreditRiskPlus::CreditRiskPlus(
const std::vector<Real> &exposure,
const std::vector<Real> &defaultProbability,
const std::vector<Size> §or,
const std::vector<Real> &relativeDefaultVariance,
const Matrix &correlation, const Real unit)
: exposure_(exposure), pd_(defaultProbability), sector_(sector),
relativeDefaultVariance_(relativeDefaultVariance),
correlation_(correlation), unit_(unit) {
m_ = exposure_.size();
QL_REQUIRE(m_ > 0, "no exposures given");
QL_REQUIRE(m_ == pd_.size(), "number of exposures ("
<< m_
<< ") must be equal to number of pds ("
<< pd_.size() << ")");
QL_REQUIRE(m_ == sector_.size(),
"number of exposures ("
<< m_
<< ") must be equal to number of exposure sectors ("
<< sector_.size() << ")");
n_ = correlation_.rows();
QL_REQUIRE(correlation_.columns() == n_,
"correlation matrix (" << n_ << "," << correlation_.columns()
<< ") must be a square matrix");
QL_REQUIRE(relativeDefaultVariance_.size() == n_,
"number of relative default variances ("
<< relativeDefaultVariance_.size() << ")"
<< " must be equal to number of sectors (" << n_ << ")");
exposureSum_ = 0.0;
el_ = 0.0;
el2_ = 0.0;
for (Size i = 0; i < m_; ++i) {
QL_REQUIRE(exposure_[i] >= 0.0, "exposure #"
<< i << " is negative ("
<< exposure_[i] << ")");
QL_REQUIRE(pd_[i] > 0.0, "pd #" << i << " is negative (" << pd_[i]
<< ")");
QL_REQUIRE(sector_[i] < n_, "sector #" << i << " (" << sector_[i]
<< ") is out of range 0..."
<< (n_ - 1));
exposureSum_ += exposure_[i];
el_ += pd_[i] * exposure_[i];
el2_ += pd_[i] * exposure_[i]*exposure_[i];
}
QL_REQUIRE(unit_ > 0.0, "loss unit (" << unit_ << ") must be positive");
compute();
}
Real CreditRiskPlus::lossQuantile(const Real p) {
Size i = 0;
Real sum = loss_[0];
while(i < upperIndex_-1 && sum < p) {
++i;
sum += loss_[i];
}
if(loss_[0] >= p)
return 0.0;
Real p1 = sum - loss_[i];
Real p2 = sum >= p ? sum : 1.0;
Real l1 = (i - 1) * unit_;
Real l2 = i * unit_;
return l1 + (p - p1) / (p2 - p1) * (l2 - l1);
}
void CreditRiskPlus::compute() {
std::vector<Real> sectorPdSum_, sectorSpecTerms_;
sectorPdSum_ = std::vector<Real>(n_, 0.0);
sectorExposure_ = std::vector<Real>(n_, 0.0);
sectorEl_ = std::vector<Real>(n_, 0.0);
sectorSpecTerms_ = std::vector<Real>(n_, 0.0);
sectorUl_ = std::vector<Real>(n_, 0.0);
marginalLoss_ = std::vector<Real>(m_, 0.0);
std::vector<Real> pdAdj(m_, 0.0);
// compute exposure bands
unsigned long maxNu_ = 0;
upperIndex_ = 0;
// map of nuC_ to expected loss
std::map<unsigned long, Real, std::less<unsigned long> > epsNuC_;
std::map<unsigned long, Real, std::less<unsigned long> >::iterator iter;
for (Size k = 0; k < m_; ++k) {
unsigned long exUnit = (unsigned long)(std::floor(0.5 + exposure_[k] / unit_)); // round
if (exposure_[k] > 0 && exUnit == 0)
exUnit = 1; // but avoid zero exposure
if (exUnit > maxNu_)
maxNu_ = exUnit;
pdAdj[k] = exposure_[k] > 0.0
? exposure_[k] * pd_[k] / (exUnit * unit_)
: 0.0; // adjusted pd
Real el = exUnit * pdAdj[k];
if (exUnit > 0) {
iter = epsNuC_.find(exUnit);
if (iter == epsNuC_.end()) {
epsNuC_.insert(std::pair<unsigned long, Real>(exUnit, el));
} else {
(*iter).second += el;
}
upperIndex_ += exUnit;
}
}
// compute per sector figures
Real pdSum_ = 0;
for (Size k = 0; k < m_; ++k) {
pdSum_ += pdAdj[k];
sectorPdSum_[sector_[k]] += pd_[k];
sectorExposure_[sector_[k]] += exposure_[k];
sectorEl_[sector_[k]] += exposure_[k] * pd_[k];
}
for (Size i = 0; i < n_; ++i) {
// precompute sector specific terms (formula 15 in [1])
sectorSpecTerms_[i] += relativeDefaultVariance_[i] * sectorEl_[i];
for (Size j = 0; j < n_; ++j) {
if (j != i) {
sectorSpecTerms_[i] +=
correlation_[i][j] *
std::sqrt(relativeDefaultVariance_[i] *
relativeDefaultVariance_[j]) *
sectorEl_[j];
}
}
}
// compute synthetic standard deviation (formula 12 in [1])
ul_ = 0.0;
for (Size i = 0; i < n_; ++i) {
sectorUl_[i] =
relativeDefaultVariance_[i] * sectorEl_[i] * sectorEl_[i];
ul_ += sectorUl_[i];
for (Size j = 0; j < n_; ++j) {
if (j != i) {
ul_ += correlation_[i][j] *
std::sqrt(relativeDefaultVariance_[i] *
relativeDefaultVariance_[j]) *
sectorEl_[i] * sectorEl_[j];
}
}
}
Real matchUl_ = ul_; // formula 13 in [1], rhs
for (Size k = 0; k < m_; ++k) {
Real tmp = pd_[k] * exposure_[k] * exposure_[k];
sectorUl_[sector_[k]] += tmp;
ul_ += tmp;
}
ul_ = std::sqrt(ul_);
for (Size i = 0; i < n_; ++i)
sectorUl_[i] = std::sqrt(sectorUl_[i]);
// compute risk contributions (formula 15 in [1])
for (Size k = 0; k < m_; ++k) {
marginalLoss_[k] = pd_[k] * exposure_[k] / ul_ *
(sectorSpecTerms_[sector_[k]] + exposure_[k]);
}
// compute sigmaC_ and deduced figures
Real sigmaC_ = pdSum_ * sqrt(matchUl_ / (el_ * el_));
Real alphaC_ = pdSum_ * pdSum_ / (sigmaC_ * sigmaC_);
Real betaC_ = sigmaC_ * sigmaC_ / pdSum_;
Real pC_ = betaC_ / (1.0 + betaC_);
// compute loss distribution
loss_.clear();
loss_.push_back(std::pow(1.0 - pC_, alphaC_)); // A(0)
Real res;
for (unsigned long n = 0; n < upperIndex_ - 1; ++n) { // compute A(n+1)
// recursively
res = 0.0;
for (unsigned long j = 0;
j <= std::min<unsigned long>(maxNu_ - 1, n); ++j) {
iter = epsNuC_.find(j + 1);
if (iter != epsNuC_.end()) {
res += (*iter).second * loss_[n - j] * alphaC_;
if (j <= n - 1)
res += (*iter).second / ((Real)(j + 1)) *
((Real)(n - j)) * loss_[n - j];
}
}
loss_.push_back(res * pC_ / (pdSum_ * ((Real)(n + 1))));
}
}
}
|