1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2014 Peter Caspers
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/experimental/volatility/noarbsabr.hpp>
#include <ql/math/solvers1d/brent.hpp>
#include <ql/math/modifiedbessel.hpp>
#include <ql/functional.hpp>
#include <boost/math/special_functions/gamma.hpp>
#include <boost/assign/std/vector.hpp>
#include <boost/functional/hash.hpp>
namespace QuantLib {
class NoArbSabrModel::integrand {
const NoArbSabrModel* model;
Real strike;
public:
integrand(const NoArbSabrModel* model, Real strike)
: model(model), strike(strike) {}
Real operator()(Real f) const {
return std::max(f - strike, 0.0) * model->p(f);
}
};
class NoArbSabrModel::p_integrand {
const NoArbSabrModel* model;
public:
explicit p_integrand(const NoArbSabrModel* model)
: model(model) {}
Real operator()(Real f) const {
return model->p(f);
}
};
NoArbSabrModel::NoArbSabrModel(const Real expiryTime, const Real forward,
const Real alpha, const Real beta, const Real nu,
const Real rho)
: expiryTime_(expiryTime), externalForward_(forward), alpha_(alpha),
beta_(beta), nu_(nu), rho_(rho), forward_(forward),
numericalForward_(forward) {
using namespace ext::placeholders;
QL_REQUIRE(expiryTime > 0.0 && expiryTime <= detail::NoArbSabrModel::expiryTime_max,
"expiryTime (" << expiryTime << ") out of bounds");
QL_REQUIRE(forward > 0.0, "forward (" << forward << ") must be positive");
QL_REQUIRE(beta >= detail::NoArbSabrModel::beta_min && beta <= detail::NoArbSabrModel::beta_max,
"beta (" << beta << ") out of bounds");
Real sigmaI = alpha * std::pow(forward, beta - 1.0);
QL_REQUIRE(sigmaI >= detail::NoArbSabrModel::sigmaI_min &&
sigmaI <= detail::NoArbSabrModel::sigmaI_max,
"sigmaI = alpha*forward^(beta-1.0) ("
<< sigmaI << ") out of bounds, alpha=" << alpha
<< " beta=" << beta << " forward=" << forward);
QL_REQUIRE(nu >= detail::NoArbSabrModel::nu_min && nu <= detail::NoArbSabrModel::nu_max,
"nu (" << nu << ") out of bounds");
QL_REQUIRE(rho >= detail::NoArbSabrModel::rho_min && rho <= detail::NoArbSabrModel::rho_max,
"rho (" << rho << ") out of bounds");
// determine a region sufficient for integration in the normal case
fmin_ = fmax_ = forward_;
for (Real tmp = p(fmax_);
tmp > std::max(detail::NoArbSabrModel::i_accuracy / std::max(1.0, fmax_ - fmin_),
detail::NoArbSabrModel::density_threshold);
tmp = p(fmax_)) {
fmax_ *= 2.0;
}
for (Real tmp = p(fmin_);
tmp > std::max(detail::NoArbSabrModel::i_accuracy / std::max(1.0, fmax_ - fmin_),
detail::NoArbSabrModel::density_threshold);
tmp = p(fmin_)) {
fmin_ *= 0.5;
}
fmin_ = std::max(detail::NoArbSabrModel::strike_min, fmin_);
QL_REQUIRE(fmax_ > fmin_, "could not find a reasonable integration domain");
integrator_ =
ext::make_shared<GaussLobattoIntegral>(
detail::NoArbSabrModel::i_max_iterations, detail::NoArbSabrModel::i_accuracy);
detail::D0Interpolator d0(forward_, expiryTime_, alpha_, beta_, nu_, rho_);
absProb_ = d0();
try {
Brent b;
Real start = std::sqrt(externalForward_ - detail::NoArbSabrModel::strike_min);
Real tmp =
b.solve(ext::bind(&NoArbSabrModel::forwardError, this, _1),
detail::NoArbSabrModel::forward_accuracy, start,
std::min(detail::NoArbSabrModel::forward_search_step, start / 2.0));
forward_ = tmp * tmp + detail::NoArbSabrModel::strike_min;
} catch (Error&) {
// fall back to unadjusted forward
forward_ = externalForward_;
}
Real d = forwardError(std::sqrt(forward_ - detail::NoArbSabrModel::strike_min));
numericalForward_ = d + externalForward_;
}
Real NoArbSabrModel::optionPrice(const Real strike) const {
if (p(std::max(forward_, strike)) < detail::NoArbSabrModel::density_threshold)
return 0.0;
return (1.0 - absProb_) *
((*integrator_)(integrand(this, strike),
strike, std::max(fmax_, 2.0 * strike)) /
numericalIntegralOverP_);
}
Real NoArbSabrModel::digitalOptionPrice(const Real strike) const {
if (strike < QL_MIN_POSITIVE_REAL)
return 1.0;
if (p(std::max(forward_, strike)) < detail::NoArbSabrModel::density_threshold)
return 0.0;
return (1.0 - absProb_)
* ((*integrator_)(p_integrand(this),
strike, std::max(fmax_, 2.0 * strike)) /
numericalIntegralOverP_);
}
Real NoArbSabrModel::forwardError(const Real forward) const {
forward_ = forward * forward + detail::NoArbSabrModel::strike_min;
numericalIntegralOverP_ = (*integrator_)(p_integrand(this),
fmin_, fmax_);
return optionPrice(0.0) - externalForward_;
}
Real NoArbSabrModel::p(const Real f) const {
if (f < detail::NoArbSabrModel::density_lower_bound ||
forward_ < detail::NoArbSabrModel::density_lower_bound)
return 0.0;
Real fOmB = std::pow(f, 1.0 - beta_);
Real FOmB = std::pow(forward_, 1.0 - beta_);
Real zf = fOmB / (alpha_ * (1.0 - beta_));
Real zF = FOmB / (alpha_ * (1.0 - beta_));
Real z = zF - zf;
// Real JzF = std::sqrt(1.0 - 2.0 * rho_ * nu_ * zF + nu_ * nu_ * zF * zF);
Real Jmzf = std::sqrt(1.0 + 2.0 * rho_ * nu_ * zf + nu_ * nu_ * zf * zf);
Real Jz = std::sqrt(1.0 - 2.0 * rho_ * nu_ * z + nu_ * nu_ * z * z);
Real xz = std::log((Jz - rho_ + nu_ * z) / (1.0 - rho_)) / nu_;
Real Bp_B = beta_ / FOmB;
// Real Bpp_B = beta_ * (2.0 * beta_ - 1.0) / (FOmB * FOmB);
Real kappa1 = 0.125 * nu_ * nu_ * (2.0 - 3.0 * rho_ * rho_) -
0.25 * rho_ * nu_ * alpha_ * Bp_B;
// Real kappa2 = alpha_ * alpha_ * (0.25 * Bpp_B - 0.375 * Bp_B * Bp_B);
Real gamma = 1.0 / (2.0 * (1.0 - beta_));
Real sqrtOmR = std::sqrt(1.0 - rho_ * rho_);
Real h = 0.5 * beta_ * rho_ / ((1.0 - beta_) * Jmzf * Jmzf) *
(nu_ * zf * std::log(zf * Jz / zF) +
(1 + rho_ * nu_ * zf) / sqrtOmR *
(std::atan((nu_ * z - rho_) / sqrtOmR) +
std::atan(rho_ / sqrtOmR)));
Real res =
std::pow(Jz, -1.5) / (alpha_ * std::pow(f, beta_) * expiryTime_) *
std::pow(zf, 1.0 - gamma) * std::pow(zF, gamma) *
std::exp(-(xz * xz) / (2.0 * expiryTime_) +
(h + kappa1 * expiryTime_)) *
modifiedBesselFunction_i_exponentiallyWeighted(gamma,
zF * zf / expiryTime_);
return res;
}
namespace detail {
using namespace boost::assign;
D0Interpolator::D0Interpolator(const Real forward, const Real expiryTime,
const Real alpha, const Real beta, const Real nu,
const Real rho)
: forward_(forward), expiryTime_(expiryTime), alpha_(alpha), beta_(beta),
nu_(nu), rho_(rho), gamma_(1.0 / (2.0 * (1.0 - beta_))) {
sigmaI_ = alpha_ * std::pow(forward_, beta_ - 1.0);
tauG_ += 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0,
3.25, 3.5, 3.75, 4.0, 4.25, 4.5, 4.75, 5.0, 5.25, 5.5, 5.75, 6.0, 6.25,
6.5, 6.75, 7.0, 7.25, 7.5, 7.75, 8.0, 8.25, 8.5, 8.75, 9.0, 9.25, 9.5,
9.75, 10.0, 10.25, 10.5, 10.75, 11.0, 11.25, 11.5, 11.75, 12.0, 12.25,
12.5, 12.75, 13.0, 13.25, 13.5, 13.75, 14.0, 14.25, 14.5, 14.75, 15.0,
15.25, 15.5, 15.75, 16.0, 16.25, 16.5, 16.75, 17.0, 17.25, 17.5, 17.75,
18.0, 18.25, 18.5, 18.75, 19.0, 19.25, 19.5, 19.75, 20.0, 20.25, 20.5,
20.75, 21.0, 21.25, 21.5, 21.75, 22.0, 22.25, 22.5, 22.75, 23.0, 23.25,
23.5, 23.75, 24.0, 24.25, 24.5, 24.75, 25.0, 25.25, 25.5, 25.75, 26.0,
26.25, 26.5, 26.75, 27.0, 27.25, 27.5, 27.75, 28.0, 28.25, 28.5, 28.75,
29.0, 29.25, 29.5, 29.75, 30.0;
sigmaIG_ += 1.0, 0.8, 0.7, 0.6, 0.5, 0.45, 0.4, 0.35, 0.3, 0.27, 0.24, 0.21,
0.18, 0.15, 0.125, 0.1, 0.075, 0.05;
rhoG_ += 0.75, 0.50, 0.25, 0.00, -0.25, -0.50, -0.75;
nuG_ += 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8;
betaG_ += 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9;
}
Real D0Interpolator::operator()() const {
// we do not need to check the indices here, because this is already
// done in the NoArbSabr constructor
Size tauInd = std::upper_bound(tauG_.begin(), tauG_.end(), expiryTime_) -
tauG_.begin();
if (tauInd == tauG_.size())
--tauInd; // tau at upper bound
Real expiryTimeTmp = expiryTime_;
if (tauInd == 0) {
++tauInd;
expiryTimeTmp = tauG_.front();
}
Real tauL = (expiryTimeTmp - tauG_[tauInd - 1]) /
(tauG_[tauInd] - tauG_[tauInd - 1]);
int sigmaIInd =
sigmaIG_.size() -
(std::upper_bound(sigmaIG_.rbegin(), sigmaIG_.rend(), sigmaI_) -
sigmaIG_.rbegin());
if (sigmaIInd == 0)
++sigmaIInd; // sigmaI at upper bound
Real sigmaIL = (sigmaI_ - sigmaIG_[sigmaIInd - 1]) /
(sigmaIG_[sigmaIInd] - sigmaIG_[sigmaIInd - 1]);
int rhoInd =
rhoG_.size() -
(std::upper_bound(rhoG_.rbegin(), rhoG_.rend(), rho_) - rhoG_.rbegin());
if (rhoInd == 0) {
rhoInd++;
}
if (rhoInd == static_cast<int>(rhoG_.size())) {
rhoInd--;
}
Real rhoL =
(rho_ - rhoG_[rhoInd - 1]) / (rhoG_[rhoInd] - rhoG_[rhoInd - 1]);
// for nu = 0 we know phi = 0.5*z_F^2
Size nuInd = std::upper_bound(nuG_.begin(), nuG_.end(), nu_) - nuG_.begin();
if (nuInd == nuG_.size())
--nuInd; // nu at upper bound
Real tmpNuG = nuInd > 0 ? nuG_[nuInd - 1] : 0.0;
Real nuL = (nu_ - tmpNuG) / (nuG_[nuInd] - tmpNuG);
// for beta = 1 we know phi = 0.0
Size betaInd =
std::upper_bound(betaG_.begin(), betaG_.end(), beta_) - betaG_.begin();
Real tmpBetaG;
if (betaInd == betaG_.size())
tmpBetaG = 1.0;
else
tmpBetaG = betaG_[betaInd];
Real betaL =
(beta_ - betaG_[betaInd - 1]) / (tmpBetaG - betaG_[betaInd - 1]);
Real phiRes = 0.0;
for (int iTau = -1; iTau <= 0; ++iTau) {
for (int iSigma = -1; iSigma <= 0; ++iSigma) {
for (int iRho = -1; iRho <= 0; ++iRho) {
for (int iNu = -1; iNu <= 0; ++iNu) {
for (int iBeta = -1; iBeta <= 0; ++iBeta) {
Real phiTmp;
if (iNu == -1 && nuInd == 0) {
phiTmp =
0.5 /
(sigmaI_ * sigmaI_ * (1.0 - beta_) *
(1.0 - beta_)); // this is 0.5*z_F^2, see above
} else {
if (iBeta == 0 && betaInd == betaG_.size()) {
phiTmp =
phi(detail::NoArbSabrModel::tiny_prob);
} else {
int ind = (tauInd + iTau +
(sigmaIInd + iSigma +
(rhoInd + iRho +
(nuInd + iNu + ((betaInd + iBeta) *
nuG_.size())) *
rhoG_.size()) *
sigmaIG_.size()) *
tauG_.size());
QL_REQUIRE(ind >= 0 && ind < 1209600,
"absorption matrix index ("
<< ind << ") invalid");
phiTmp = phi((Real)sabrabsprob[ind] /
detail::NoArbSabrModel::nsim);
}
}
phiRes += phiTmp * (iTau == -1 ? (1.0 - tauL) : tauL) *
(iSigma == -1 ? (1.0 - sigmaIL) : sigmaIL) *
(iRho == -1 ? (1.0 - rhoL) : rhoL) *
(iNu == -1 ? (1.0 - nuL) : nuL) *
(iBeta == -1 ? (1.0 - betaL) : betaL);
}
}
}
}
}
return d0(phiRes);
}
Real D0Interpolator::phi(const Real d0) const {
if (d0 < 1e-14)
return detail::NoArbSabrModel::phiByTau_cutoff * expiryTime_;
return boost::math::gamma_q_inv(gamma_, d0) * expiryTime_;
}
Real D0Interpolator::d0(const Real phi) const {
return boost::math::gamma_q(gamma_, std::max(0.0, phi / expiryTime_));
}
} // namespace detail
} // namespace QuantLib
|