1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2002, 2003 Sadruddin Rejeb
Copyright (C) 2007 Klaus Spanderen
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/math/solvers1d/brent.hpp>
#include <ql/math/functional.hpp>
#include <ql/math/distributions/chisquaredistribution.hpp>
#include <ql/math/distributions/gammadistribution.hpp>
#include <ql/math/distributions/normaldistribution.hpp>
namespace QuantLib {
Real CumulativeChiSquareDistribution::operator()(Real x) const {
return CumulativeGammaDistribution(0.5*df_)(0.5*x);
}
Real NonCentralCumulativeChiSquareDistribution::operator()(Real x) const {
if (x <= 0.0)
return 0.0;
const Real errmax = 1e-12;
const Size itrmax = 10000;
Real lam = 0.5*ncp_;
Real u = std::exp(-lam);
Real v = u;
Real x2 = 0.5*x;
Real f2 = 0.5*df_;
Real f_x_2n = df_ - x;
Real t = 0.0;
if (f2*QL_EPSILON > 0.125 &&
std::fabs(x2-f2) < std::sqrt(QL_EPSILON)*f2) {
t = std::exp((1 - t) *
(2 - t/(f2+1)))/std::sqrt(2.0*M_PI*(f2 + 1.0));
}
else {
t = std::exp(f2*std::log(x2) - x2 -
GammaFunction().logValue(f2 + 1));
}
Real ans = v*t;
bool flag = false;
Size n = 1;
Real f_2n = df_ + 2.0;
f_x_2n += 2.0;
Real bound;
for (;;) {
if (f_x_2n > 0) {
flag = true;
goto L10;
}
for (;;) {
u *= lam / n;
v += u;
t *= x / f_2n;
ans += v*t;
n++;
f_2n += 2.0;
f_x_2n += 2.0;
if (!flag && n <= itrmax)
break;
L10:
bound = t * x / f_x_2n;
if (bound <= errmax || n > itrmax)
goto L_End;
}
}
L_End:
if (bound > errmax) QL_FAIL("didn't converge");
return (ans);
}
Real NonCentralCumulativeChiSquareSankaranApprox::operator()(Real x) const {
const Real h = 1-2*(df_+ncp_)*(df_+3*ncp_)/(3*square<Real>()(df_+2*ncp_));
const Real p = (df_+2*ncp_)/square<Real>()(df_+ncp_);
const Real m = (h-1)*(1-3*h);
const Real u= (std::pow(x/(df_+ncp_), h) - (1 + h*p*(h-1-0.5*(2-h)*m*p)))/
(h*std::sqrt(2*p)*(1+0.5*m*p));
return CumulativeNormalDistribution()(u);
}
InverseNonCentralCumulativeChiSquareDistribution::
InverseNonCentralCumulativeChiSquareDistribution(Real df, Real ncp,
Size maxEvaluations,
Real accuracy)
: nonCentralDist_(df, ncp),
guess_(df+ncp),
maxEvaluations_(maxEvaluations),
accuracy_(accuracy) {
}
Real InverseNonCentralCumulativeChiSquareDistribution::operator()(Real x) const {
// first find the right side of the interval
Real upper = guess_;
Size evaluations = maxEvaluations_;
while (nonCentralDist_(upper) < x && evaluations > 0) {
upper*=2.0;
--evaluations;
}
// use a Brent solver for the rest
Brent solver;
solver.setMaxEvaluations(evaluations);
return solver.solve(compose(subtract<Real>(x),
nonCentralDist_),
accuracy_, 0.75*upper,
(evaluations == maxEvaluations_)? 0.0: 0.5*upper,
upper);
}
}
|