1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2003 RiskMap srl
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file ql/math/functional.hpp
\brief functionals and combinators not included in the STL
*/
#ifndef quantlib_math_functional_hpp
#define quantlib_math_functional_hpp
#include <ql/types.hpp>
#include <ql/utilities/null.hpp>
#include <cmath>
namespace QuantLib {
// functions
template <class T, class U>
class constant {
public:
typedef T argument_type;
typedef U result_type;
explicit constant(const U& u) : u_(u) {}
U operator()(const T&) const { return u_; }
private:
U u_;
};
template <class T>
class identity {
public:
typedef T argument_type;
typedef T result_type;
T operator()(const T& t) const { return t; }
};
template <class T>
class square {
public:
typedef T argument_type;
typedef T result_type;
T operator()(const T& t) const { return t*t; }
};
template <class T>
class cube {
public:
typedef T argument_type;
typedef T result_type;
T operator()(const T& t) const { return t*t*t; }
};
template <class T>
class fourth_power {
public:
typedef T argument_type;
typedef T result_type;
T operator()(const T& t) const { T t2 = t*t; return t2*t2; }
};
// a few shortcuts for common binders
template <class T>
class add {
T y;
public:
typedef T argument_type;
typedef Real result_type;
explicit add(Real y) : y(y) {}
Real operator()(T x) const { return x + y; }
};
template <class T>
class subtract {
T y;
public:
typedef T argument_type;
typedef Real result_type;
explicit subtract(Real y) : y(y) {}
Real operator()(T x) const { return x - y; }
};
template <class T>
class subtract_from {
T y;
public:
typedef T argument_type;
typedef Real result_type;
explicit subtract_from(Real y) : y(y) {}
Real operator()(T x) const { return y - x; }
};
template <class T>
class multiply_by {
T y;
public:
typedef T argument_type;
typedef Real result_type;
explicit multiply_by(Real y) : y(y) {}
Real operator()(T x) const { return x * y; }
};
template <class T>
class divide {
T y;
public:
typedef T argument_type;
typedef Real result_type;
explicit divide(Real y) : y(y) {}
Real operator()(T x) const { return y / x; }
};
template <class T>
class divide_by {
T y;
public:
typedef T argument_type;
typedef Real result_type;
explicit divide_by(Real y) : y(y) {}
Real operator()(T x) const { return x / y; }
};
template <class T>
class less_than {
T y;
public:
typedef T argument_type;
typedef bool result_type;
explicit less_than(Real y) : y(y) {}
bool operator()(T x) const { return x < y; }
};
template <class T>
class greater_than {
T y;
public:
typedef T argument_type;
typedef bool result_type;
explicit greater_than(Real y) : y(y) {}
bool operator()(T x) const { return x > y; }
};
template <class T>
class greater_or_equal_to {
T y;
public:
typedef T argument_type;
typedef bool result_type;
explicit greater_or_equal_to(Real y) : y(y) {}
bool operator()(T x) const { return x >= y; }
};
template <class T>
class not_zero {
public:
typedef T argument_type;
typedef bool result_type;
bool operator()(T x) const { return x != T(); }
};
template <class T>
class not_null {
T null;
public:
typedef T argument_type;
typedef bool result_type;
not_null() : null(Null<T>()) {}
bool operator()(T x) const { return x != null; }
};
// predicates
class everywhere : public constant<Real,bool> {
public:
everywhere() : constant<Real,bool>(true) {}
};
class nowhere : public constant<Real,bool> {
public:
nowhere() : constant<Real,bool>(false) {}
};
template <class T>
class equal_within {
public:
typedef T first_argument_type;
typedef T second_argument_type;
typedef bool result_type;
explicit equal_within(const T& eps) : eps_(eps) {}
bool operator()(const T& a, const T& b) const {
return std::fabs(a-b) <= eps_;
}
private:
const T eps_;
};
// combinators
template <class F, class R>
class clipped_function {
public:
typedef typename F::argument_type argument_type;
typedef typename F::result_type result_type;
clipped_function(const F& f, const R& r) : f_(f), r_(r) {}
result_type operator()(const argument_type& x) const {
return r_(x) ? f_(x) : result_type();
}
private:
F f_;
R r_;
};
template <class F, class R>
clipped_function<F,R> clip(const F& f, const R& r) {
return clipped_function<F,R>(f,r);
}
template <class F, class G>
class composed_function {
public:
typedef typename G::argument_type argument_type;
typedef typename F::result_type result_type;
composed_function(const F& f, const G& g) : f_(f), g_(g) {}
result_type operator()(const argument_type& x) const {
return f_(g_(x));
}
private:
F f_;
G g_;
};
template <class F, class G>
composed_function<F,G> compose(const F& f, const G& g) {
return composed_function<F,G>(f,g);
}
template <class F, class G, class H>
class binary_compose3_function {
public:
typedef typename G::argument_type first_argument_type;
typedef typename H::argument_type second_argument_type;
typedef typename F::result_type result_type;
binary_compose3_function(const F& f, const G& g, const H& h)
: f_(f), g_(g), h_(h) {}
result_type operator()(const first_argument_type& x,
const second_argument_type& y) const {
return f_(g_(x), h_(y));
}
private:
F f_;
G g_;
H h_;
};
template <class F, class G, class H> binary_compose3_function<F, G, H>
compose3(const F& f, const G& g, const H& h) {
return binary_compose3_function<F, G, H>(f, g, h);
}
}
#endif
|