File: functional.hpp

package info (click to toggle)
quantlib 1.21-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 45,532 kB
  • sloc: cpp: 388,042; makefile: 6,661; sh: 4,381; lisp: 86
file content (293 lines) | stat: -rw-r--r-- 7,440 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2003 RiskMap srl

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file ql/math/functional.hpp
    \brief functionals and combinators not included in the STL
*/

#ifndef quantlib_math_functional_hpp
#define quantlib_math_functional_hpp

#include <ql/types.hpp>
#include <ql/utilities/null.hpp>
#include <cmath>

namespace QuantLib {

    // functions

    template <class T, class U>
    class constant {
      public:
        typedef T argument_type;
        typedef U result_type;
        explicit constant(const U& u) : u_(u) {}
        U operator()(const T&) const { return u_; }
      private:
        U u_;
    };

    template <class T>
    class identity {
      public:
        typedef T argument_type;
        typedef T result_type;
        T operator()(const T& t) const { return t; }
    };

    template <class T>
    class square {
      public:
        typedef T argument_type;
        typedef T result_type;
        T operator()(const T& t) const { return t*t; }
    };

    template <class T>
    class cube {
      public:
        typedef T argument_type;
        typedef T result_type;
        T operator()(const T& t) const { return t*t*t; }
    };

    template <class T>
    class fourth_power {
      public:
        typedef T argument_type;
        typedef T result_type;
        T operator()(const T& t) const { T t2 = t*t; return t2*t2; }
    };

    // a few shortcuts for common binders

    template <class T>
    class add {
        T y;
      public:
        typedef T argument_type;
        typedef Real result_type;

        explicit add(Real y) : y(y) {}
        Real operator()(T x) const { return x + y; }
    };

    template <class T>
    class subtract {
        T y;
      public:
        typedef T argument_type;
        typedef Real result_type;

        explicit subtract(Real y) : y(y) {}
        Real operator()(T x) const { return x - y; }
    };

    template <class T>
    class subtract_from {
        T y;
      public:
        typedef T argument_type;
        typedef Real result_type;

        explicit subtract_from(Real y) : y(y) {}
        Real operator()(T x) const { return y - x; }
    };

    template <class T>
    class multiply_by {
        T y;
      public:
        typedef T argument_type;
        typedef Real result_type;

        explicit multiply_by(Real y) : y(y) {}
        Real operator()(T x) const { return x * y; }
    };

    template <class T>
    class divide {
        T y;
      public:
        typedef T argument_type;
        typedef Real result_type;

        explicit divide(Real y) : y(y) {}
        Real operator()(T x) const { return y / x; }
    };

    template <class T>
    class divide_by {
        T y;
      public:
        typedef T argument_type;
        typedef Real result_type;

        explicit divide_by(Real y) : y(y) {}
        Real operator()(T x) const { return x / y; }
    };

    template <class T>
    class less_than {
        T y;
      public:
        typedef T argument_type;
        typedef bool result_type;

        explicit less_than(Real y) : y(y) {}
        bool operator()(T x) const { return x < y; }
    };

    template <class T>
    class greater_than {
        T y;
      public:
        typedef T argument_type;
        typedef bool result_type;

        explicit greater_than(Real y) : y(y) {}
        bool operator()(T x) const { return x > y; }
    };

    template <class T>
    class greater_or_equal_to {
        T y;
      public:
        typedef T argument_type;
        typedef bool result_type;

        explicit greater_or_equal_to(Real y) : y(y) {}
        bool operator()(T x) const { return x >= y; }
    };

    template <class T>
    class not_zero {
      public:
        typedef T argument_type;
        typedef bool result_type;
        bool operator()(T x) const { return x != T(); }
    };

    template <class T>
    class not_null {
        T null;
      public:
        typedef T argument_type;
        typedef bool result_type;

        not_null() : null(Null<T>()) {}
        bool operator()(T x) const { return x != null; }
    };
    
    // predicates

    class everywhere : public constant<Real,bool> {
      public:
        everywhere() : constant<Real,bool>(true) {}
    };

    class nowhere : public constant<Real,bool> {
      public:
        nowhere() : constant<Real,bool>(false) {}
    };

    template <class T>
    class equal_within {
      public:
        typedef T first_argument_type;
        typedef T second_argument_type;
        typedef bool result_type;

        explicit equal_within(const T& eps) : eps_(eps) {}
        bool operator()(const T& a, const T& b) const {
            return std::fabs(a-b) <= eps_;
        }
      private:
        const T eps_;
    };

    // combinators
    template <class F, class R>
    class clipped_function {
      public:
        typedef typename F::argument_type argument_type;
        typedef typename F::result_type result_type;
        clipped_function(const F& f, const R& r) : f_(f), r_(r) {}
        result_type operator()(const argument_type& x) const {
            return r_(x) ? f_(x) : result_type();
        }
      private:
        F f_;
        R r_;
    };

    template <class F, class R>
    clipped_function<F,R> clip(const F& f, const R& r) {
        return clipped_function<F,R>(f,r);
    }


    template <class F, class G>
    class composed_function {
      public:
        typedef typename G::argument_type argument_type;
        typedef typename F::result_type result_type;
        composed_function(const F& f, const G& g) : f_(f), g_(g) {}
        result_type operator()(const argument_type& x) const {
            return f_(g_(x));
        }
      private:
        F f_;
        G g_;
    };

    template <class F, class G>
    composed_function<F,G> compose(const F& f, const G& g) {
        return composed_function<F,G>(f,g);
    }

    template <class F, class G, class H>
    class binary_compose3_function {
      public:
        typedef typename G::argument_type first_argument_type;
        typedef typename H::argument_type second_argument_type;
        typedef typename F::result_type result_type;

        binary_compose3_function(const F& f, const G& g, const H& h)
        : f_(f), g_(g), h_(h) {}

        result_type operator()(const first_argument_type&  x,
                               const second_argument_type& y) const {
            return f_(g_(x), h_(y));
        }

      private:
        F f_;
        G g_;
        H h_;
    };

    template <class F, class G, class H> binary_compose3_function<F, G, H>
    compose3(const F& f, const G& g, const H& h) {
        return binary_compose3_function<F, G, H>(f, g, h);
    }
}


#endif