1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2005 Klaus Spanderen
Copyright (C) 2005 Gary Kennedy
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file gaussianquadratures.hpp
\brief Integral of a 1-dimensional function using the Gauss quadratures
*/
#include <ql/math/integrals/gaussianquadratures.hpp>
#include <ql/math/matrixutilities/tqreigendecomposition.hpp>
#include <ql/math/matrixutilities/symmetricschurdecomposition.hpp>
namespace QuantLib {
GaussianQuadrature::GaussianQuadrature(
Size n,
const GaussianOrthogonalPolynomial& orthPoly)
: x_(n), w_(n) {
// set-up matrix to compute the roots and the weights
Array e(n-1);
Size i;
for (i=1; i < n; ++i) {
x_[i] = orthPoly.alpha(i);
e[i-1] = std::sqrt(orthPoly.beta(i));
}
x_[0] = orthPoly.alpha(0);
TqrEigenDecomposition tqr(
x_, e,
TqrEigenDecomposition::OnlyFirstRowEigenVector,
TqrEigenDecomposition::Overrelaxation);
x_ = tqr.eigenvalues();
const Matrix& ev = tqr.eigenvectors();
Real mu_0 = orthPoly.mu_0();
for (i=0; i<n; ++i) {
w_[i] = mu_0*ev[0][i]*ev[0][i] / orthPoly.w(x_[i]);
}
}
void TabulatedGaussLegendre::order(Size order) {
switch(order) {
case(6):
order_=order; x_=x6; w_=w6; n_=n6;
break;
case(7):
order_=order; x_=x7; w_=w7; n_=n7;
break;
case(12):
order_=order; x_=x12; w_=w12; n_=n12;
break;
case(20):
order_=order; x_=x20; w_=w20; n_=n20;
break;
default:
QL_FAIL("order " << order << " not supported");
}
}
// Abscissas and Weights from Abramowitz and Stegun
/* order 6 */
const Real TabulatedGaussLegendre::x6[3] = { 0.238619186083197,
0.661209386466265,
0.932469514203152 };
const Real TabulatedGaussLegendre::w6[3] = { 0.467913934572691,
0.360761573048139,
0.171324492379170 };
const Size TabulatedGaussLegendre::n6 = 3;
/* order 7 */
const Real TabulatedGaussLegendre::x7[4] = { 0.000000000000000,
0.405845151377397,
0.741531185599394,
0.949107912342759 };
const Real TabulatedGaussLegendre::w7[4] = { 0.417959183673469,
0.381830050505119,
0.279705391489277,
0.129484966168870 };
const Size TabulatedGaussLegendre::n7 = 4;
/* order 12 */
const Real TabulatedGaussLegendre::x12[6] = { 0.125233408511469,
0.367831498998180,
0.587317954286617,
0.769902674194305,
0.904117256370475,
0.981560634246719 };
const Real TabulatedGaussLegendre::w12[6] = { 0.249147045813403,
0.233492536538355,
0.203167426723066,
0.160078328543346,
0.106939325995318,
0.047175336386512 };
const Size TabulatedGaussLegendre::n12 = 6;
/* order 20 */
const Real TabulatedGaussLegendre::x20[10] = { 0.076526521133497,
0.227785851141645,
0.373706088715420,
0.510867001950827,
0.636053680726515,
0.746331906460151,
0.839116971822219,
0.912234428251326,
0.963971927277914,
0.993128599185095 };
const Real TabulatedGaussLegendre::w20[10] = { 0.152753387130726,
0.149172986472604,
0.142096109318382,
0.131688638449177,
0.118194531961518,
0.101930119817240,
0.083276741576704,
0.062672048334109,
0.040601429800387,
0.017614007139152 };
const Size TabulatedGaussLegendre::n20 = 10;
}
|