1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2006 François du Vignaud
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/math/integrals/kronrodintegral.hpp>
#include <ql/types.hpp>
namespace QuantLib {
static Real rescaleError(Real err,
const Real resultAbs,
const Real resultAsc) {
err = std::fabs(err) ;
if (resultAsc != 0 && err != 0){
Real scale = std::pow((200 * err / resultAsc), 1.5) ;
if (scale < 1)
err = resultAsc * scale ;
else
err = resultAsc ;
}
if (resultAbs > QL_MIN_POSITIVE_REAL / (50 * QL_EPSILON )){
Real min_err = 50 * QL_EPSILON * resultAbs ;
if (min_err > err)
err = min_err ;
}
return err ;
}
/* Gauss-Kronrod-Patterson quadrature coefficients for use in
quadpack routine qng. These coefficients were calculated with
101 decimal digit arithmetic by L. W. Fullerton, Bell Labs, Nov
1981. */
/* x1, abscissae common to the 10-, 21-, 43- and 87-point rule */
static const Real x1[5] = {
0.973906528517171720077964012084452,
0.865063366688984510732096688423493,
0.679409568299024406234327365114874,
0.433395394129247190799265943165784,
0.148874338981631210884826001129720
} ;
/* w10, weights of the 10-point formula */
static const Real w10[5] = {
0.066671344308688137593568809893332,
0.149451349150580593145776339657697,
0.219086362515982043995534934228163,
0.269266719309996355091226921569469,
0.295524224714752870173892994651338
} ;
/* x2, abscissae common to the 21-, 43- and 87-point rule */
static const Real x2[5] = {
0.995657163025808080735527280689003,
0.930157491355708226001207180059508,
0.780817726586416897063717578345042,
0.562757134668604683339000099272694,
0.294392862701460198131126603103866
} ;
/* w21a, weights of the 21-point formula for abscissae x1 */
static const Real w21a[5] = {
0.032558162307964727478818972459390,
0.075039674810919952767043140916190,
0.109387158802297641899210590325805,
0.134709217311473325928054001771707,
0.147739104901338491374841515972068
} ;
/* w21b, weights of the 21-point formula for abscissae x2 */
static const Real w21b[6] = {
0.011694638867371874278064396062192,
0.054755896574351996031381300244580,
0.093125454583697605535065465083366,
0.123491976262065851077958109831074,
0.142775938577060080797094273138717,
0.149445554002916905664936468389821
} ;
/* x3, abscissae common to the 43- and 87-point rule */
static const Real x3[11] = {
0.999333360901932081394099323919911,
0.987433402908088869795961478381209,
0.954807934814266299257919200290473,
0.900148695748328293625099494069092,
0.825198314983114150847066732588520,
0.732148388989304982612354848755461,
0.622847970537725238641159120344323,
0.499479574071056499952214885499755,
0.364901661346580768043989548502644,
0.222254919776601296498260928066212,
0.074650617461383322043914435796506
} ;
/* w43a, weights of the 43-point formula for abscissae x1, x3 */
static const Real w43a[10] = {
0.016296734289666564924281974617663,
0.037522876120869501461613795898115,
0.054694902058255442147212685465005,
0.067355414609478086075553166302174,
0.073870199632393953432140695251367,
0.005768556059769796184184327908655,
0.027371890593248842081276069289151,
0.046560826910428830743339154433824,
0.061744995201442564496240336030883,
0.071387267268693397768559114425516
} ;
/* w43b, weights of the 43-point formula for abscissae x3 */
static const Real w43b[12] = {
0.001844477640212414100389106552965,
0.010798689585891651740465406741293,
0.021895363867795428102523123075149,
0.032597463975345689443882222526137,
0.042163137935191811847627924327955,
0.050741939600184577780189020092084,
0.058379395542619248375475369330206,
0.064746404951445885544689259517511,
0.069566197912356484528633315038405,
0.072824441471833208150939535192842,
0.074507751014175118273571813842889,
0.074722147517403005594425168280423
} ;
/* x4, abscissae of the 87-point rule */
static const Real x4[22] = {
0.999902977262729234490529830591582,
0.997989895986678745427496322365960,
0.992175497860687222808523352251425,
0.981358163572712773571916941623894,
0.965057623858384619128284110607926,
0.943167613133670596816416634507426,
0.915806414685507209591826430720050,
0.883221657771316501372117548744163,
0.845710748462415666605902011504855,
0.803557658035230982788739474980964,
0.757005730685495558328942793432020,
0.706273209787321819824094274740840,
0.651589466501177922534422205016736,
0.593223374057961088875273770349144,
0.531493605970831932285268948562671,
0.466763623042022844871966781659270,
0.399424847859218804732101665817923,
0.329874877106188288265053371824597,
0.258503559202161551802280975429025,
0.185695396568346652015917141167606,
0.111842213179907468172398359241362,
0.037352123394619870814998165437704
} ;
/* w87a, weights of the 87-point formula for abscissae x1, x2, x3 */
static const Real w87a[21] = {
0.008148377384149172900002878448190,
0.018761438201562822243935059003794,
0.027347451050052286161582829741283,
0.033677707311637930046581056957588,
0.036935099820427907614589586742499,
0.002884872430211530501334156248695,
0.013685946022712701888950035273128,
0.023280413502888311123409291030404,
0.030872497611713358675466394126442,
0.035693633639418770719351355457044,
0.000915283345202241360843392549948,
0.005399280219300471367738743391053,
0.010947679601118931134327826856808,
0.016298731696787335262665703223280,
0.021081568889203835112433060188190,
0.025370969769253827243467999831710,
0.029189697756475752501446154084920,
0.032373202467202789685788194889595,
0.034783098950365142750781997949596,
0.036412220731351787562801163687577,
0.037253875503047708539592001191226
} ;
/* w87b, weights of the 87-point formula for abscissae x4 */
static const Real w87b[23] = {
0.000274145563762072350016527092881,
0.001807124155057942948341311753254,
0.004096869282759164864458070683480,
0.006758290051847378699816577897424,
0.009549957672201646536053581325377,
0.012329447652244853694626639963780,
0.015010447346388952376697286041943,
0.017548967986243191099665352925900,
0.019938037786440888202278192730714,
0.022194935961012286796332102959499,
0.024339147126000805470360647041454,
0.026374505414839207241503786552615,
0.028286910788771200659968002987960,
0.030052581128092695322521110347341,
0.031646751371439929404586051078883,
0.033050413419978503290785944862689,
0.034255099704226061787082821046821,
0.035262412660156681033782717998428,
0.036076989622888701185500318003895,
0.036698604498456094498018047441094,
0.037120549269832576114119958413599,
0.037334228751935040321235449094698,
0.037361073762679023410321241766599
} ;
Real GaussKronrodNonAdaptive::relativeAccuracy() const {
return relativeAccuracy_;
}
GaussKronrodNonAdaptive::GaussKronrodNonAdaptive(Real absoluteAccuracy,
Size maxEvaluations,
Real relativeAccuracy)
: Integrator(absoluteAccuracy, maxEvaluations),
relativeAccuracy_(relativeAccuracy) {}
Real
GaussKronrodNonAdaptive::integrate(const ext::function<Real (Real)>& f,
Real a,
Real b) const {
Real result;
//Size neval;
Real fv1[5], fv2[5], fv3[5], fv4[5];
Real savfun[21]; /* array of function values which have been computed */
Real res10, res21, res43, res87; /* 10, 21, 43 and 87 point results */
Real err;
Real resAbs; /* approximation to the integral of abs(f) */
Real resasc; /* approximation to the integral of abs(f-i/(b-a)) */
int k ;
QL_REQUIRE(a<b, "b must be greater than a)");
const Real halfLength = 0.5 * (b - a);
const Real center = 0.5 * (b + a);
const Real fCenter = f(center);
// Compute the integral using the 10- and 21-point formula.
res10 = 0;
res21 = w21b[5] * fCenter;
resAbs = w21b[5] * std::fabs(fCenter);
for (k = 0; k < 5; k++) {
Real abscissa = halfLength * x1[k];
Real fval1 = f(center + abscissa);
Real fval2 = f(center - abscissa);
Real fval = fval1 + fval2;
res10 += w10[k] * fval;
res21 += w21a[k] * fval;
resAbs += w21a[k] * (std::fabs(fval1) + std::fabs(fval2));
savfun[k] = fval;
fv1[k] = fval1;
fv2[k] = fval2;
}
for (k = 0; k < 5; k++) {
Real abscissa = halfLength * x2[k];
Real fval1 = f(center + abscissa);
Real fval2 = f(center - abscissa);
Real fval = fval1 + fval2;
res21 += w21b[k] * fval;
resAbs += w21b[k] * (std::fabs(fval1) + std::fabs(fval2));
savfun[k + 5] = fval;
fv3[k] = fval1;
fv4[k] = fval2;
}
result = res21 * halfLength;
resAbs *= halfLength ;
Real mean = 0.5 * res21;
resasc = w21b[5] * std::fabs(fCenter - mean);
for (k = 0; k < 5; k++)
resasc += (w21a[k] * (std::fabs(fv1[k] - mean)
+ std::fabs(fv2[k] - mean))
+ w21b[k] * (std::fabs(fv3[k] - mean)
+ std::fabs(fv4[k] - mean)));
err = rescaleError ((res21 - res10) * halfLength, resAbs, resasc) ;
resasc *= halfLength ;
// test for convergence.
if (err < absoluteAccuracy() || err < relativeAccuracy() * std::fabs(result)){
setAbsoluteError(err);
setNumberOfEvaluations(21);
return result;
}
/* compute the integral using the 43-point formula. */
res43 = w43b[11] * fCenter;
for (k = 0; k < 10; k++)
res43 += savfun[k] * w43a[k];
for (k = 0; k < 11; k++){
Real abscissa = halfLength * x3[k];
Real fval = (f(center + abscissa)
+ f(center - abscissa));
res43 += fval * w43b[k];
savfun[k + 10] = fval;
}
// test for convergence.
result = res43 * halfLength;
err = rescaleError ((res43 - res21) * halfLength, resAbs, resasc);
if (err < absoluteAccuracy() || err < relativeAccuracy() * std::fabs(result)){
setAbsoluteError(err);
setNumberOfEvaluations(43);
return result;
}
/* compute the integral using the 87-point formula. */
res87 = w87b[22] * fCenter;
for (k = 0; k < 21; k++)
res87 += savfun[k] * w87a[k];
for (k = 0; k < 22; k++){
Real abscissa = halfLength * x4[k];
res87 += w87b[k] * (f(center + abscissa)
+ f(center - abscissa));
}
// test for convergence.
result = res87 * halfLength ;
err = rescaleError ((res87 - res43) * halfLength, resAbs, resasc);
setAbsoluteError(err);
setNumberOfEvaluations(87);
return result;
}
Real
GaussKronrodAdaptive::integrate(const ext::function<Real (Real)>& f,
Real a,
Real b) const {
return integrateRecursively(f, a, b, absoluteAccuracy());
}
// weights for 7-point Gauss-Legendre integration
// (only 4 values out of 7 are given as they are symmetric)
static const Real g7w[] = { 0.417959183673469,
0.381830050505119,
0.279705391489277,
0.129484966168870 };
// weights for 15-point Gauss-Kronrod integration
static const Real k15w[] = { 0.209482141084728,
0.204432940075298,
0.190350578064785,
0.169004726639267,
0.140653259715525,
0.104790010322250,
0.063092092629979,
0.022935322010529 };
// abscissae (evaluation points)
// for 15-point Gauss-Kronrod integration
static const Real k15t[] = { 0.000000000000000,
0.207784955007898,
0.405845151377397,
0.586087235467691,
0.741531185599394,
0.864864423359769,
0.949107912342758,
0.991455371120813 };
Real GaussKronrodAdaptive::integrateRecursively(
const ext::function<Real (Real)>& f,
Real a,
Real b,
Real tolerance) const {
Real halflength = (b - a) / 2;
Real center = (a + b) / 2;
Real g7; // will be result of G7 integral
Real k15; // will be result of K15 integral
Real t, fsum; // t (abscissa) and f(t)
Real fc = f(center);
g7 = fc * g7w[0];
k15 = fc * k15w[0];
// calculate g7 and half of k15
Integer j, j2;
for (j = 1, j2 = 2; j < 4; j++, j2 += 2) {
t = halflength * k15t[j2];
fsum = f(center - t) + f(center + t);
g7 += fsum * g7w[j];
k15 += fsum * k15w[j2];
}
// calculate other half of k15
for (j2 = 1; j2 < 8; j2 += 2) {
t = halflength * k15t[j2];
fsum = f(center - t) + f(center + t);
k15 += fsum * k15w[j2];
}
// multiply by (a - b) / 2
g7 = halflength * g7;
k15 = halflength * k15;
// 15 more function evaluations have been used
increaseNumberOfEvaluations(15);
// error is <= k15 - g7
// if error is larger than tolerance then split the interval
// in two and integrate recursively
if (std::fabs(k15 - g7) < tolerance) {
return k15;
} else {
QL_REQUIRE(numberOfEvaluations()+30 <=
maxEvaluations(),
"maximum number of function evaluations "
"exceeded");
return integrateRecursively(f, a, center, tolerance/2)
+ integrateRecursively(f, center, b, tolerance/2);
}
}
GaussKronrodAdaptive::GaussKronrodAdaptive(Real absoluteAccuracy,
Size maxEvaluations)
: Integrator(absoluteAccuracy, maxEvaluations) {
QL_REQUIRE(maxEvaluations >= 15,
"required maxEvaluations (" << maxEvaluations <<
") not allowed. It must be >= 15");
}
}
|