File: fdmcirop.cpp

package info (click to toggle)
quantlib 1.21-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 45,532 kB
  • sloc: cpp: 388,042; makefile: 6,661; sh: 4,381; lisp: 86
file content (183 lines) | stat: -rw-r--r-- 6,161 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2020 Lew Wei Hao

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

#include <ql/methods/finitedifferences/meshers/fdmmesher.hpp>
#include <ql/methods/finitedifferences/operators/fdmcirop.hpp>
#include <ql/methods/finitedifferences/operators/fdmlinearoplayout.hpp>
#include <ql/methods/finitedifferences/operators/secondderivativeop.hpp>
#include <ql/methods/finitedifferences/operators/secondordermixedderivativeop.hpp>
#include <ql/processes/blackscholesprocess.hpp>

namespace QuantLib {

    FdmCIREquityPart::FdmCIREquityPart(
        const ext::shared_ptr<FdmMesher>& mesher,
        const ext::shared_ptr<GeneralizedBlackScholesProcess>& bsProcess,
        Real strike)
    : dxMap_ (FirstDerivativeOp(0, mesher)),
      dxxMap_(SecondDerivativeOp(0, mesher)),
      mapT_ (0, mesher),
      mesher_(mesher),
      qTS_(bsProcess->dividendYield().currentLink()),
      strike_(strike),
      sigma1_(bsProcess->blackVolatility().currentLink()){
    }

    void FdmCIREquityPart::setTime(Time t1, Time t2) {
        const Rate q = qTS_->forwardRate(t1, t2, Continuous).rate();

        const Real v = sigma1_->blackForwardVariance(t1, t2, strike_)/(t2-t1);

        mapT_.axpyb(mesher_->locations(1) - q - 0.5*v, dxMap_,
                        dxxMap_.mult(Array(mesher_->layout()->size(), v/2)), -0.5*mesher_->locations(1));
    }

    const TripleBandLinearOp& FdmCIREquityPart::getMap() const {
        return mapT_;
    }

    FdmCIRRatesPart::FdmCIRRatesPart(
        const ext::shared_ptr<FdmMesher>& mesher,
        Real sigma, Real kappa, Real theta)
    : dyMap_(SecondDerivativeOp(1, mesher)
                   .mult(sigma*sigma*mesher->locations(1))
                   .add(FirstDerivativeOp(1, mesher)
                   .mult(kappa*(theta - mesher->locations(1))))),
      mapT_(1, mesher),
      mesher_(mesher){
    }

    void FdmCIRRatesPart::setTime(Time t1, Time t2) {
        mapT_.axpyb(Array(), dyMap_, dyMap_, -0.5*mesher_->locations(1));
    }

    const TripleBandLinearOp& FdmCIRRatesPart::getMap() const {
        return mapT_;
    }

    FdmCIRMixedPart::FdmCIRMixedPart(
        const ext::shared_ptr<FdmMesher>& mesher,
        const ext::shared_ptr<CoxIngersollRossProcess> & cirProcess,
        const ext::shared_ptr<GeneralizedBlackScholesProcess> & bsProcess,
        const Real rho,
        const Real strike)
        : dyMap_(SecondOrderMixedDerivativeOp(0, 1, mesher)
                     .mult(Array(mesher->layout()->size(), 2*rho*cirProcess->volatility()))),
          mapT_(0, 1, mesher),
          mesher_(mesher),
          sigma1_(bsProcess->blackVolatility().currentLink()),
          strike_(strike){
    }

    void FdmCIRMixedPart::setTime(Time t1, Time t2) {
        const Real v = std::sqrt(sigma1_->blackForwardVariance(t1, t2, strike_)/(t2-t1));
        NinePointLinearOp op(dyMap_.mult(Array(mesher_->layout()->size(), v)));
        mapT_.swap(op);
    }

    const NinePointLinearOp& FdmCIRMixedPart::getMap() const {
        return mapT_;
    }

    FdmCIROp::FdmCIROp(
        const ext::shared_ptr<FdmMesher>& mesher,
        const ext::shared_ptr<CoxIngersollRossProcess> & cirProcess,
        const ext::shared_ptr<GeneralizedBlackScholesProcess> & bsProcess,
        const Real rho,
        const Real strike)
    : dxMap_(mesher,
             bsProcess,
             strike),
      dyMap_(mesher,
             cirProcess->volatility(),
             cirProcess->speed(),
             cirProcess->level()),
      dzMap_(mesher,
             cirProcess,
             bsProcess,
             rho,
             strike){
    }


    void FdmCIROp::setTime(Time t1, Time t2) {
        dxMap_.setTime(t1, t2);
        dyMap_.setTime(t1, t2);
        dzMap_.setTime(t1, t2);
    }

    Size FdmCIROp::size() const {
        return 2;
    }

    Disposable<Array> FdmCIROp::apply(const Array& u) const {
        Array dx = dxMap_.getMap().apply(u);
        Array dy = dyMap_.getMap().apply(u);
        Array dz = dzMap_.getMap().apply(u);

        return (dy + dx + dz);
    }

    Disposable<Array> FdmCIROp::apply_direction(Size direction,
                                                   const Array& r) const {
        if (direction == 0)
            return dxMap_.getMap().apply(r);
        else if (direction == 1)
            return dyMap_.getMap().apply(r);
        else
            QL_FAIL("direction too large");
    }

    Disposable<Array> FdmCIROp::apply_mixed(const Array& r) const {
        return dzMap_.getMap().apply(r);
    }

    Disposable<Array>
        FdmCIROp::solve_splitting(Size direction,
                                     const Array& r, Real a) const {

        if (direction == 0) {
            return dxMap_.getMap().solve_splitting(r, a, 1.0);
        }
        else if (direction == 1) {
            return dyMap_.getMap().solve_splitting(r, a, 1.0);
        }
        else
            QL_FAIL("direction too large");
    }

    Disposable<Array>
        FdmCIROp::preconditioner(const Array& r, Real dt) const {

        return solve_splitting(1, solve_splitting(0, r, dt), dt) ;
    }

#if !defined(QL_NO_UBLAS_SUPPORT)
    Disposable<std::vector<SparseMatrix> >
    FdmCIROp::toMatrixDecomp() const {
        std::vector<SparseMatrix> retVal(3);

        retVal[0] = dxMap_.getMap().toMatrix();
        retVal[1] = dyMap_.getMap().toMatrix();
        retVal[2] = dzMap_.getMap().toMatrix();

        return retVal;
    }
#endif
}