1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2008 Andreas Gaida
Copyright (C) 2008 Ralph Schreyer
Copyright (C) 2008, 2014, 2015 Klaus Spanderen
Copyright (C) 2015 Johannes Göttker-Schnetmann
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/methods/finitedifferences/meshers/fdmmesher.hpp>
#include <ql/methods/finitedifferences/operators/fdmhestonop.hpp>
#include <ql/methods/finitedifferences/operators/fdmlinearoplayout.hpp>
#include <ql/methods/finitedifferences/operators/secondderivativeop.hpp>
#include <ql/methods/finitedifferences/operators/secondordermixedderivativeop.hpp>
namespace QuantLib {
FdmHestonEquityPart::FdmHestonEquityPart(
const ext::shared_ptr<FdmMesher>& mesher,
const ext::shared_ptr<YieldTermStructure>& rTS,
const ext::shared_ptr<YieldTermStructure>& qTS,
const ext::shared_ptr<FdmQuantoHelper>& quantoHelper,
const ext::shared_ptr<LocalVolTermStructure>& leverageFct)
: varianceValues_(0.5*mesher->locations(1)),
dxMap_ (FirstDerivativeOp(0, mesher)),
dxxMap_(SecondDerivativeOp(0, mesher).mult(0.5*mesher->locations(1))),
mapT_ (0, mesher),
mesher_(mesher),
rTS_(rTS),
qTS_(qTS),
quantoHelper_(quantoHelper),
leverageFct_(leverageFct) {
// on the boundary s_min and s_max the second derivative
// d^2V/dS^2 is zero and due to Ito's Lemma the variance term
// in the drift should vanish.
ext::shared_ptr<FdmLinearOpLayout> layout = mesher_->layout();
FdmLinearOpIterator endIter = layout->end();
for (FdmLinearOpIterator iter = layout->begin(); iter != endIter;
++iter) {
if ( iter.coordinates()[0] == 0
|| iter.coordinates()[0] == layout->dim()[0]-1) {
varianceValues_[iter.index()] = 0.0;
}
}
volatilityValues_ = Sqrt(2*varianceValues_);
}
void FdmHestonEquityPart::setTime(Time t1, Time t2) {
const Rate r = rTS_->forwardRate(t1, t2, Continuous).rate();
const Rate q = qTS_->forwardRate(t1, t2, Continuous).rate();
L_ = getLeverageFctSlice(t1, t2);
const Array Lsquare = L_*L_;
if (quantoHelper_ != 0) {
mapT_.axpyb(r - q - varianceValues_*Lsquare
- quantoHelper_->quantoAdjustment(
volatilityValues_*L_, t1, t2),
dxMap_, dxxMap_.mult(Lsquare), Array(1, -0.5*r));
}
else {
mapT_.axpyb(r - q - varianceValues_*Lsquare, dxMap_,
dxxMap_.mult(Lsquare), Array(1, -0.5*r));
}
}
Disposable<Array> FdmHestonEquityPart::getLeverageFctSlice(Time t1, Time t2)
const {
const ext::shared_ptr<FdmLinearOpLayout> layout=mesher_->layout();
Array v(layout->size(), 1.0);
if (!leverageFct_) {
return v;
}
const Real t = 0.5*(t1+t2);
const Time time = std::min(leverageFct_->maxTime(), t);
const FdmLinearOpIterator endIter = layout->end();
for (FdmLinearOpIterator iter = layout->begin();
iter!=endIter; ++iter) {
const Size nx = iter.coordinates()[0];
if (iter.coordinates()[1] == 0) {
const Real x = std::exp(mesher_->location(iter, 0));
const Real spot = std::min(leverageFct_->maxStrike(),
std::max(leverageFct_->minStrike(), x));
v[nx] = std::max(0.01, leverageFct_->localVol(time, spot, true));
}
else {
v[iter.index()] = v[nx];
}
}
return v;
}
const TripleBandLinearOp& FdmHestonEquityPart::getMap() const {
return mapT_;
}
FdmHestonVariancePart::FdmHestonVariancePart(
const ext::shared_ptr<FdmMesher>& mesher,
const ext::shared_ptr<YieldTermStructure>& rTS,
Real mixedSigma, Real kappa, Real theta)
: dyMap_(SecondDerivativeOp(1, mesher)
.mult(0.5*mixedSigma*mixedSigma*mesher->locations(1))
.add(FirstDerivativeOp(1, mesher)
.mult(kappa*(theta - mesher->locations(1))))),
mapT_(1, mesher),
rTS_(rTS) {
}
void FdmHestonVariancePart::setTime(Time t1, Time t2) {
const Rate r = rTS_->forwardRate(t1, t2, Continuous).rate();
mapT_.axpyb(Array(), dyMap_, dyMap_, Array(1,-0.5*r));
}
const TripleBandLinearOp& FdmHestonVariancePart::getMap() const {
return mapT_;
}
FdmHestonOp::FdmHestonOp(
const ext::shared_ptr<FdmMesher>& mesher,
const ext::shared_ptr<HestonProcess> & hestonProcess,
const ext::shared_ptr<FdmQuantoHelper>& quantoHelper,
const ext::shared_ptr<LocalVolTermStructure>& leverageFct,
const Real mixingFactor)
: correlationMap_(SecondOrderMixedDerivativeOp(0, 1, mesher)
.mult(hestonProcess->rho()*hestonProcess->sigma()
*mixingFactor
*mesher->locations(1))),
dyMap_(mesher, hestonProcess->riskFreeRate().currentLink(),
hestonProcess->sigma()*mixingFactor,
hestonProcess->kappa(),
hestonProcess->theta()),
dxMap_(mesher,
hestonProcess->riskFreeRate().currentLink(),
hestonProcess->dividendYield().currentLink(),
quantoHelper, leverageFct) {
}
void FdmHestonOp::setTime(Time t1, Time t2) {
dxMap_.setTime(t1, t2);
dyMap_.setTime(t1, t2);
}
Size FdmHestonOp::size() const {
return 2;
}
Disposable<Array> FdmHestonOp::apply(const Array& u) const {
return dyMap_.getMap().apply(u) + dxMap_.getMap().apply(u)
+ dxMap_.getL()*correlationMap_.apply(u);
}
Disposable<Array> FdmHestonOp::apply_direction(Size direction,
const Array& r) const {
if (direction == 0)
return dxMap_.getMap().apply(r);
else if (direction == 1)
return dyMap_.getMap().apply(r);
else
QL_FAIL("direction too large");
}
Disposable<Array> FdmHestonOp::apply_mixed(const Array& r) const {
return dxMap_.getL()*correlationMap_.apply(r);
}
Disposable<Array>
FdmHestonOp::solve_splitting(Size direction,
const Array& r, Real a) const {
if (direction == 0) {
return dxMap_.getMap().solve_splitting(r, a, 1.0);
}
else if (direction == 1) {
return dyMap_.getMap().solve_splitting(r, a, 1.0);
}
else
QL_FAIL("direction too large");
}
Disposable<Array>
FdmHestonOp::preconditioner(const Array& r, Real dt) const {
return solve_splitting(1, solve_splitting(0, r, dt), dt) ;
}
#if !defined(QL_NO_UBLAS_SUPPORT)
Disposable<std::vector<SparseMatrix> >
FdmHestonOp::toMatrixDecomp() const {
std::vector<SparseMatrix> retVal(3);
retVal[0] = dxMap_.getMap().toMatrix();
retVal[1] = dyMap_.getMap().toMatrix();
retVal[2] = correlationMap_.toMatrix();
return retVal;
}
#endif
}
|