File: fdmsabrop.cpp

package info (click to toggle)
quantlib 1.21-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 45,532 kB
  • sloc: cpp: 388,042; makefile: 6,661; sh: 4,381; lisp: 86
file content (110 lines) | stat: -rw-r--r-- 3,894 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2018 Klaus Spanderen

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file fdmsabrop.cpp
    \brief FDM operator for the SABR model
*/

#include <ql/termstructures/yieldtermstructure.hpp>
#include <ql/methods/finitedifferences/meshers/fdmmesher.hpp>
#include <ql/methods/finitedifferences/operators/fdmsabrop.hpp>
#include <ql/methods/finitedifferences/operators/fdmlinearoplayout.hpp>
#include <ql/methods/finitedifferences/operators/firstderivativeop.hpp>
#include <ql/methods/finitedifferences/operators/secondderivativeop.hpp>
#include <ql/methods/finitedifferences/operators/secondordermixedderivativeop.hpp>

namespace QuantLib {
    FdmSabrOp::FdmSabrOp(
        const ext::shared_ptr<FdmMesher>& mesher,
        const ext::shared_ptr<YieldTermStructure>& rTS,
        Real f0, Real alpha, Real beta, Real nu, Real rho)
    : rTS_  (rTS),
      dffMap_(SecondDerivativeOp(0, mesher).
          mult(0.5 * Exp(2.0*mesher->locations(1))
               * Pow(mesher->locations(0), 2.0*beta))),
      dxMap_(FirstDerivativeOp(1, mesher).
          mult(Array(mesher->layout()->size(), -0.5*nu*nu))),
      dxxMap_(SecondDerivativeOp(1, mesher).
          mult(Array(mesher->layout()->size(),  0.5*nu*nu))),
      correlationMap_(SecondOrderMixedDerivativeOp(0, 1, mesher).
          mult(rho * nu * Exp(mesher->locations(1))
               * Pow(mesher->locations(0), beta))),
      mapF_(0, mesher),
      mapA_(1, mesher) { }

    void FdmSabrOp::setTime(Time t1, Time t2) {
        const Rate r = rTS_->forwardRate(t1, t2, Continuous).rate();

        mapF_.axpyb(Array(), dffMap_, dffMap_, Array(1, -0.5*r));
        mapA_.axpyb(Array(1, 1.0), dxMap_, dxxMap_, Array(1, -0.5*r));
    }

    Size FdmSabrOp::size() const {
        return 2;
    }

    Disposable<Array> FdmSabrOp::apply(const Array& u) const {
        return mapF_.apply(u) + mapA_.apply(u) + correlationMap_.apply(u);
    }

    Disposable<Array> FdmSabrOp::apply_mixed(const Array& r) const {
        return correlationMap_.apply(r);
    }

    Disposable<Array> FdmSabrOp::apply_direction(
        Size direction, const Array& r) const {
        if (direction == 0)
            return mapF_.apply(r);
        else if (direction == 1)
            return mapA_.apply(r);
        else
            QL_FAIL("direction too large");
    }

    Disposable<Array> FdmSabrOp::solve_splitting(
       Size direction, const Array& r, Real a) const {

        if (direction == 0) {
            return mapF_.solve_splitting(r, a, 1.0);
        }
        else if (direction == 1) {
            return mapA_.solve_splitting(r, a, 1.0);
        }
        else
            QL_FAIL("direction too large");
    }

    Disposable<Array> FdmSabrOp::preconditioner(
        const Array& r, Real dt) const {

        return solve_splitting(1, solve_splitting(0, r, dt), dt) ;
    }

#if !defined(QL_NO_UBLAS_SUPPORT)
    Disposable<std::vector<SparseMatrix> > FdmSabrOp::toMatrixDecomp() const {
        std::vector<SparseMatrix> retVal(3);

        retVal[0] = mapA_.toMatrix();
        retVal[1] = mapF_.toMatrix();
        retVal[2] = correlationMap_.toMatrix();

        return retVal;
    }
#endif
}