File: numericaldifferentiation.cpp

package info (click to toggle)
quantlib 1.21-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 45,532 kB
  • sloc: cpp: 388,042; makefile: 6,661; sh: 4,381; lisp: 86
file content (120 lines) | stat: -rw-r--r-- 4,387 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2015 Klaus Spanderen

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file numericaldifferentiation.cpp */

#include <ql/methods/finitedifferences/operators/numericaldifferentiation.hpp>

#ifndef QL_EXTRA_SAFETY_CHECKS
#define BOOST_DISABLE_ASSERTS 1
#endif
#if defined(__GNUC__) && (((__GNUC__ == 4) && (__GNUC_MINOR__ >= 8)) || (__GNUC__ > 4))
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-local-typedefs"
#endif
#include <boost/multi_array.hpp>
#if defined(__GNUC__) && (((__GNUC__ == 4) && (__GNUC_MINOR__ >= 8)) || (__GNUC__ > 4))
#pragma GCC diagnostic pop
#endif

namespace QuantLib {

    namespace {
        Disposable<Array> calcOffsets(
            Real h, Size n, NumericalDifferentiation::Scheme scheme) {
            QL_REQUIRE(n > 1, "number of steps must be greater than one");

            Array retVal(n);
            switch (scheme) {
              case NumericalDifferentiation::Central:
                QL_REQUIRE(n > 2 && (n % 2),
                    "number of steps must be an odd number greater than two");
                for (Integer i=0; i < Integer(n); ++i)
                    retVal[i] = (i-Integer(n/2))*h;
                break;
              case NumericalDifferentiation::Backward:
                for (Size i=0; i < n; ++i)
                    retVal[i]=-(i*h);
                break;
              case NumericalDifferentiation::Forward:
                for (Size i=0; i < n; ++i)
                    retVal[i]=i*h;
                break;
              default:
                QL_FAIL("unknown numerical differentiation scheme");
            }

            return retVal;
        }

        // This is a C++ implementation of the algorithm/pseudo code in
        // B. Fornberg, 1998. Calculation of Weights
        //                    in Finite Difference Formulas
        // https://amath.colorado.edu/faculty/fornberg/Docs/sirev_cl.pdf
        Disposable<Array> calcWeights(const Array& x, Size M) {
            const Size N = x.size();
            QL_REQUIRE(N > M, "number of points must be greater "
                               "than the order of the derivative");

            boost::multi_array<Real, 3>  d(boost::extents[M+1][N][N]);
            d[0][0][0] = 1.0;
            Real c1 = 1.0;

            for (Size n=1; n < N; ++n) {
                Real c2 = 1.0;
                for (Size nu=0; nu < n; ++nu) {
                    const Real c3 = x[n] - x[nu];
                    c2*=c3;

                    for (Size m=0; m <= std::min(n, M); ++m) {
                        d[m][n][nu] = (x[n]*d[m][n-1][nu]
                             - ((m > 0)? m*d[m-1][n-1][nu] : 0.0))/c3;
                    }
                }

                for (Size m=0; m <= M; ++m) {
                    d[m][n][n] = c1/c2*( ((m > 0)? m*d[m-1][n-1][n-1] : 0.0) -
                        x[n-1]*d[m][n-1][n-1] );
                }
                c1=c2;
            }


            Array retVal(N);
            for (Size i=0; i < N; ++i) {
                retVal[i] = d[M][N-1][i];
            }
            return retVal;
        }
    }

    NumericalDifferentiation::NumericalDifferentiation(
        const ext::function<Real(Real)>& f,
        Size orderOfDerivative,    const Array& x_offsets)
    : offsets_(x_offsets),
      w_(calcWeights(offsets_, orderOfDerivative)), f_(f) { }


    NumericalDifferentiation::NumericalDifferentiation(
        const ext::function<Real(Real)>& f,
        Size orderOfDerivative,
        Real stepSize, Size steps, Scheme scheme)
    : offsets_(calcOffsets(stepSize, steps, scheme)),
      w_(calcWeights(offsets_, orderOfDerivative)), f_(f) { }
}