1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2015 Klaus Spanderen
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file numericaldifferentiation.cpp */
#include <ql/methods/finitedifferences/operators/numericaldifferentiation.hpp>
#ifndef QL_EXTRA_SAFETY_CHECKS
#define BOOST_DISABLE_ASSERTS 1
#endif
#if defined(__GNUC__) && (((__GNUC__ == 4) && (__GNUC_MINOR__ >= 8)) || (__GNUC__ > 4))
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-local-typedefs"
#endif
#include <boost/multi_array.hpp>
#if defined(__GNUC__) && (((__GNUC__ == 4) && (__GNUC_MINOR__ >= 8)) || (__GNUC__ > 4))
#pragma GCC diagnostic pop
#endif
namespace QuantLib {
namespace {
Disposable<Array> calcOffsets(
Real h, Size n, NumericalDifferentiation::Scheme scheme) {
QL_REQUIRE(n > 1, "number of steps must be greater than one");
Array retVal(n);
switch (scheme) {
case NumericalDifferentiation::Central:
QL_REQUIRE(n > 2 && (n % 2),
"number of steps must be an odd number greater than two");
for (Integer i=0; i < Integer(n); ++i)
retVal[i] = (i-Integer(n/2))*h;
break;
case NumericalDifferentiation::Backward:
for (Size i=0; i < n; ++i)
retVal[i]=-(i*h);
break;
case NumericalDifferentiation::Forward:
for (Size i=0; i < n; ++i)
retVal[i]=i*h;
break;
default:
QL_FAIL("unknown numerical differentiation scheme");
}
return retVal;
}
// This is a C++ implementation of the algorithm/pseudo code in
// B. Fornberg, 1998. Calculation of Weights
// in Finite Difference Formulas
// https://amath.colorado.edu/faculty/fornberg/Docs/sirev_cl.pdf
Disposable<Array> calcWeights(const Array& x, Size M) {
const Size N = x.size();
QL_REQUIRE(N > M, "number of points must be greater "
"than the order of the derivative");
boost::multi_array<Real, 3> d(boost::extents[M+1][N][N]);
d[0][0][0] = 1.0;
Real c1 = 1.0;
for (Size n=1; n < N; ++n) {
Real c2 = 1.0;
for (Size nu=0; nu < n; ++nu) {
const Real c3 = x[n] - x[nu];
c2*=c3;
for (Size m=0; m <= std::min(n, M); ++m) {
d[m][n][nu] = (x[n]*d[m][n-1][nu]
- ((m > 0)? m*d[m-1][n-1][nu] : 0.0))/c3;
}
}
for (Size m=0; m <= M; ++m) {
d[m][n][n] = c1/c2*( ((m > 0)? m*d[m-1][n-1][n-1] : 0.0) -
x[n-1]*d[m][n-1][n-1] );
}
c1=c2;
}
Array retVal(N);
for (Size i=0; i < N; ++i) {
retVal[i] = d[M][N-1][i];
}
return retVal;
}
}
NumericalDifferentiation::NumericalDifferentiation(
const ext::function<Real(Real)>& f,
Size orderOfDerivative, const Array& x_offsets)
: offsets_(x_offsets),
w_(calcWeights(offsets_, orderOfDerivative)), f_(f) { }
NumericalDifferentiation::NumericalDifferentiation(
const ext::function<Real(Real)>& f,
Size orderOfDerivative,
Real stepSize, Size steps, Scheme scheme)
: offsets_(calcOffsets(stepSize, steps, scheme)),
w_(calcWeights(offsets_, orderOfDerivative)), f_(f) { }
}
|