File: fdm1dimsolver.cpp

package info (click to toggle)
quantlib 1.21-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 45,532 kB
  • sloc: cpp: 388,042; makefile: 6,661; sh: 4,381; lisp: 86
file content (106 lines) | stat: -rw-r--r-- 4,376 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2011 Klaus Spanderen

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

#include <ql/math/interpolations/cubicinterpolation.hpp>
#include <ql/methods/finitedifferences/finitedifferencemodel.hpp>
#include <ql/methods/finitedifferences/meshers/fdmmesher.hpp>
#include <ql/methods/finitedifferences/operators/fdmlinearoplayout.hpp>
#include <ql/methods/finitedifferences/utilities/fdminnervaluecalculator.hpp>
#include <ql/methods/finitedifferences/solvers/fdm1dimsolver.hpp>
#include <ql/methods/finitedifferences/stepconditions/fdmstepconditioncomposite.hpp>
#include <ql/methods/finitedifferences/stepconditions/fdmsnapshotcondition.hpp>

namespace QuantLib {

    Fdm1DimSolver::Fdm1DimSolver(
                             const FdmSolverDesc& solverDesc,
                             const FdmSchemeDesc& schemeDesc,
                             const ext::shared_ptr<FdmLinearOpComposite>& op)
    : solverDesc_(solverDesc),
      schemeDesc_(schemeDesc),
      op_(op),
      thetaCondition_(ext::make_shared<FdmSnapshotCondition>(
        0.99*std::min(1.0/365.0,
           solverDesc.condition->stoppingTimes().empty()
                    ? solverDesc.maturity
                    : solverDesc.condition->stoppingTimes().front()))),
      conditions_(FdmStepConditionComposite::joinConditions(thetaCondition_,
                                                         solverDesc.condition)),
      x_            (solverDesc.mesher->layout()->size()),
      initialValues_(solverDesc.mesher->layout()->size()),
      resultValues_ (solverDesc.mesher->layout()->size()) {

        const ext::shared_ptr<FdmMesher> mesher = solverDesc.mesher;
        const ext::shared_ptr<FdmLinearOpLayout> layout = mesher->layout();

        const FdmLinearOpIterator endIter = layout->end();
        for (FdmLinearOpIterator iter = layout->begin(); iter != endIter;
             ++iter) {
            initialValues_[iter.index()]
                 = solverDesc_.calculator->avgInnerValue(iter,
                                                         solverDesc.maturity);
            x_[iter.index()] = mesher->location(iter, 0);
        }
    }


    void Fdm1DimSolver::performCalculations() const {
        Array rhs(initialValues_.size());
        std::copy(initialValues_.begin(), initialValues_.end(), rhs.begin());

        FdmBackwardSolver(op_, solverDesc_.bcSet, conditions_, schemeDesc_)
            .rollback(rhs, solverDesc_.maturity, 0.0,
                      solverDesc_.timeSteps, solverDesc_.dampingSteps);

        std::copy(rhs.begin(), rhs.end(), resultValues_.begin());
        interpolation_ = ext::make_shared<MonotonicCubicNaturalSpline>(x_.begin(), x_.end(),
                                        resultValues_.begin());
    }

    Real Fdm1DimSolver::interpolateAt(Real x) const {
        calculate();
        return (*interpolation_)(x);
    }

    Real Fdm1DimSolver::thetaAt(Real x) const {
        if (conditions_->stoppingTimes().front() == 0.0)
            return Null<Real>();

        calculate();
        Array thetaValues(resultValues_.size());

        const Array& rhs = thetaCondition_->getValues();
        std::copy(rhs.begin(), rhs.end(), thetaValues.begin());

        Real temp = MonotonicCubicNaturalSpline(
            x_.begin(), x_.end(), thetaValues.begin())(x);
        return ( temp - interpolateAt(x) ) / thetaCondition_->getTime();
    }


    Real Fdm1DimSolver::derivativeX(Real x) const {
        calculate();
        return interpolation_->derivative(x);
    }

    Real Fdm1DimSolver::derivativeXX(Real x) const {
        calculate();
        return interpolation_->secondDerivative(x);
    }
}